【学界】AlphaPose升级!上海交大卢策吾团队开源密集人群姿态估计代码

2019 年 3 月 3 日 GAN生成式对抗网络




来源:新智元

【导读】AlphaPose升级了!上海交大MVIG组(卢策吾团队)构建了CrowdPose数据集,用来衡量算法在拥挤场景中的性能。同时提出了一个高效的算法来解决拥挤人群中的姿态估计问题,实验结果远高于当前最好的算法。


AlphaPose升级了!



拥挤人群场景下的AlphaPose


这个实时多人姿态估计系统,现在可以处理最具挑战的拥挤人群场景了:


  • 上海交大MVIG组(卢策吾团队)建了一个新的数据集——CrowdPose,用来衡量算法在拥挤场景中的性能;

  • 同时提出了一个高效的算法来解决拥挤人群中的姿态估计问题:相比OpenPose提升18mAP、相比Mask-RCNN提升8mAP。



论文已被CVPR2019接收。


论文链接:

https://arxiv.org/abs/1812.00324

代码链接:

https://github.com/MVIG-SJTU/AlphaPose


CrowdPose——拥挤人群姿态估计数据集


为了衡量人体姿态估计算法的性能,学术界与工业界建立了越来越多的公开数据集,如MPII,MSCOCO和AI Challenger。然而,这些数据集的图片通常采集自日常的生活场景,缺乏拥挤人群场景的数据。


主流数据集的拥挤场景分布如图1所示。对于由数据驱动的深度学习方法来说,数据集的分布不均衡,意味着算法性能的不均衡。


图1 主流公开数据集于CrowdPose数据集的拥挤场景数据分布。三个主流数据集的数据中,非拥挤数据占据了绝大部分比例,而CrowdPose数据集有着均匀的数据分布。


随着学术界对人体姿态研究的深入,算法追求像素级的精度,简单场景下的性能已经逐步逼近人类的精度,但在拥挤场景中往往会失效,如图2所示。


图2 随着拥挤程度的加剧,现有开源系统的性能急剧下降。相较于非拥挤的情况,拥挤时算法性能最多下降了20mAP。


针对这样的情况,上海交大MVIG组的研究者开源了CrowdPose数据集。CrowdPose数据集中的图片,有着均匀分布的拥挤程度。既可以评估算法在日常非拥挤情况下的表现,也可以评估其在极度拥挤时的性能。


目前,数据集开源了2万张图片,评估工具也已经上线。在未来的几个月时间內,研究者将会不断扩大数据的规模,开源一个更大的数据集。


实时全局竞争匹配算法


在拥挤人群的场景下,传统的二步法模型往往会失效。主要原因在于:人群过于密集,重合程度太高,每个人的位置难以用人体检测框表示


图3  人体检测框难以表达人的位置。

 

研究者们提出了一个全局竞争匹配算法,减少了姿态估计模型对于人体框的依赖,同时提高了模型对于复杂人体场景的鲁棒性,在拥挤场景中的表现超越了现有的方法。


图4  本研究中的全局竞争匹配算法概览。模型对于每个检测到的人体框输出一系列候选关键点。人体实例与关键点实例构建成一个稀疏图模型。通过求解稀疏图模型的最佳匹配问题,可得到全局最优的人体姿态估计方案,对密集拥挤的场景有很强的鲁棒性。

 

研究者们设计了一个关节点候选损失函数,通过控制模型输出响应程度不同的多峰值热度图,在人体框不准确的情况下,模型尽可能地输出候选关节点可能的位置。


在得到每个人体框的候选关节点后,通过聚类与链接,消除冗余结果的同时,构建出一个人体实例-候选关节的图模型。该图模型表征了人体实例与每个关节点之间的连接关系与概率。


借助此模型,人体姿态估计问题可转化成图模型中的最佳匹配问题。由于人体姿态问题的特殊,该图模型具有很强的稀疏性,经过研究者们的分析,优化匹配问题的时间复杂度与传统的NMS算法相当。


该方法由于建立了一个全局的图模型,在匹配过程中考虑到了整体的连接方式,因此能很好地改善了二步法中缺乏全局视野的不足。


姿态估计各场景性能大幅提升


在实验中,研究者们对比了该算法与其他开源系统与算法之间的性能。



在CrowdPose数据集中,比当前最好的算法提升了5.2mAP。除此之外,在极度拥挤的子集中,提升了6.2mAP。相较于OpenPose和Detectron(Mask R-CNN)等姿态估计开源系统,性能提升的同时,运行速度快了2到3倍。


表1 在CrowdPose数据集上的定量对比实验


表2 三个场景子集中的性能评估与运行速度对比(简单、一般、拥挤)。

本文的方法分数提升的同时,运行速度也大大增强。

 

未来方向


论文中,研究者们提出了一种新的竞争匹配模型,以解决拥挤场景的人体姿态检测问题。接下来,研究者们会优化竞争匹配模型,对其他形式的拥挤检测问题(如拥挤实例分割)开展进一步研究。


论文链接:

https://arxiv.org/abs/1812.00324

通讯作者:卢策吾

第一作者:李杰锋

代码链接:

https://github.com/MVIG-SJTU/AlphaPose



高质量延伸阅读

☞ OpenPV平台发布在线的ParallelEye视觉任务挑战赛

【学界】第1届“智能车辆中的平行视觉”研讨会成功举行

【学界】生成式对抗网络:从生成数据到创造智能

【学界】OpenPV:中科院研究人员建立开源的平行视觉研究平台

【学界】基于平行视觉的特定场景下行人检测

【学界】ParallelEye:面向交通视觉研究构建的大规模虚拟图像集

【CFP】Virtual Images for Visual Artificial Intelligence

【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

【智能自动化学科前沿讲习班第1期】王飞跃教授:生成式对抗网络GAN的研究进展与展望

【智能自动化学科前沿讲习班第1期】王坤峰副研究员:GAN与平行视觉

【重磅】平行将成为一种常态:从SimGAN获得CVPR 2017最佳论文奖说起

【平行讲坛】平行图像:图像生成的一个新型理论框架

【学界】基于生成对抗网络的低秩图像生成方法

【学界】Ian Goodfellow等人提出对抗重编程,让神经网络执行其他任务

【学界】六种GAN评估指标的综合评估实验,迈向定量评估GAN的重要一步

【资源】T2T:利用StackGAN和ProGAN从文本生成人脸

【学界】 CVPR 2018最佳论文作者亲笔解读:研究视觉任务关联性的Taskonomy

【业界】英特尔OpenVINO™工具包为创新智能视觉提供更多可能

【学界】ECCV 2018: 对抗深度学习: 鱼 (模型准确性) 与熊掌 (模型鲁棒性) 能否兼得 

【学界】何恺明组又出神作!最新论文提出全景分割新方法

登录查看更多
1

相关内容

卢策吾,上海交通大学研究员,博士生导师,国家海外高层次青年人才,2018年被《麻省理工科技评论》评委35位35岁以下中国科技精英(MIT TR35),2019年获求是杰出青年学者,2020年获上海市科技进步特等奖(排名第三)。在《自然》机器智能子刊、TPAMI、CVPR等高水平期刊和会议发表论近70篇CCF A类论文,11篇扩展版ESI高被引论文),担任《科学》《自然-机器智能》审稿人,CVPR 2020、ICCV 2021、IROS 2021领域主席。研究兴趣包括:行为理解、机器人学习。代表作有人体姿态估计Alphapose(GitHub Star 5000+),HAKE(人体行为引擎),GraspNet(高性能机器人抓取系统)等。
2020年中国《知识图谱》行业研究报告,45页ppt
专知会员服务
239+阅读 · 2020年4月18日
专知会员服务
109+阅读 · 2020年3月12日
已删除
将门创投
8+阅读 · 2019年6月13日
【姿态估计比Mask-RCNN提高8%】上交卢策吾团队开源AlphaPose
上海交大机器视觉与智能实验室
9+阅读 · 2018年2月4日
Arxiv
4+阅读 · 2019年9月26日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
Top
微信扫码咨询专知VIP会员