【小样本学习】什么是小样本学习?这篇综述文章用166篇参考文献告诉你答案

2020 年 5 月 14 日 深度学习自然语言处理

点击上方,选择星标置顶,每天给你送干货

阅读大概需要5分钟

跟随小博主,每天进步一丢丢


来源:机器之心
再次编辑:夕小瑶的卖萌屋

什么是小样本学习?它与弱监督学习等问题有何差异?其核心问题是什么?来自港科大和第四范式的这篇综述论文提供了解答。

数据是机器学习领域的重要资源,在数据缺少的情况下如何训练模型呢?小样本学习是其中一个解决方案。来自香港科技大学和第四范式的研究人员综述了该领域的研究发展,并提出了未来的研究方向。

这篇综述论文已被 ACM Computing Surveys 接收,作者还建立了 GitHub repo,用于更新该领域的发展。

  • 论文地址:https://arxiv.org/pdf/1904.05046.pdf

  • GitHub 地址:https://github.com/tata1661/FewShotPapers

机器学习在数据密集型应用中取得了很大成功,但在面临小数据集的情况下往往捉襟见肘。近期出现的小样本学习(Few-Shot Learning,FSL)方法旨在解决该问题。FSL 利用先验知识,能够快速泛化至仅包含少量具备监督信息的样本的新任务中。

这篇论文对 FSL 方法进行了综述。首先,该论文给出了 FSL 的正式定义,并厘清了它与相关机器学习问题(弱监督学习、不平衡学习、迁移学习和元学习)的关联和差异。然后指出 FSL 的核心问题,即经验风险最小化方法不可靠。

基于各个方法利用先验知识处理核心问题的方式,该研究将 FSL 方法分为三大类:

  • 数据:利用先验知识增强监督信号;

  • 模型:利用先验知识缩小假设空间的大小;

  • 算法:利用先验知识更改给定假设空间中对最优假设的搜索。

最后,这篇文章提出了 FSL 的未来研究方向:FSL 问题设置、技术、应用和理论。

论文概览

该综述论文所覆盖的主题见下图:

我们选取介绍了该综述论文中的部分内容,详情参见原论文。

什么是小样本学习

FSL 是机器学习的子领域。

我们先来看机器学习的定义:

计算机程序基于与任务 T 相关的经验 E 学习,并得到性能改进(性能度量指标为 P)。

基于此,该研究将 FSL 定义为:

小样本学习是一类机器学习问题,其经验 E 中仅包含有限数量的监督信息。

下图对比了具备充足训练样本和少量训练样本的学习算法:

FSL方法分类

根据先验知识的利用方式,FSL方法可分为三类:

FSL 方法解决少样本问题的不同角度。

基于此,该研究将现有的 FSL 方法纳入此框架,得到如下分类体系:

数据

此类 FSL 方法利用先验知识增强数据 D_train,从而扩充监督信息,利用充足数据来实现可靠的经验风险最小化。

如上图所示,根据增强数据的来源,这类 FSL 方法可分为以下三个类别:

模型

基于所用先验知识的类型,这类方法可分为如下四个类别:

算法

根据先验知识对搜索策略的影响,此类方法可分为三个类别:

文章最后从问题设置、技术、应用和理论四个层面探讨了小样本学习领域的未来发展方向。



投稿或交流学习,备注: 昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多: 机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等
记得备注呦



登录查看更多
1

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
最新《多任务学习》综述,39页pdf
专知会员服务
264+阅读 · 2020年7月10日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
基于小样本学习的图像分类技术综述
专知会员服务
148+阅读 · 2020年5月6日
零样本图像分类综述 : 十年进展
专知会员服务
127+阅读 · 2019年11月16日
基于小样本学习的意图识别冷启动
黑龙江大学自然语言处理实验室
18+阅读 · 2019年5月15日
元学习(Meta-Learning) 综述及五篇顶会论文推荐
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
自动机器学习(AutoML)最新综述
PaperWeekly
34+阅读 · 2018年11月7日
论文浅尝 | 用图网络做小样本学习
开放知识图谱
66+阅读 · 2018年6月30日
【领域报告】小样本学习年度进展|VALSE2018
深度学习大讲堂
26+阅读 · 2018年6月14日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
45+阅读 · 2019年12月20日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
相关资讯
基于小样本学习的意图识别冷启动
黑龙江大学自然语言处理实验室
18+阅读 · 2019年5月15日
元学习(Meta-Learning) 综述及五篇顶会论文推荐
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
自动机器学习(AutoML)最新综述
PaperWeekly
34+阅读 · 2018年11月7日
论文浅尝 | 用图网络做小样本学习
开放知识图谱
66+阅读 · 2018年6月30日
【领域报告】小样本学习年度进展|VALSE2018
深度学习大讲堂
26+阅读 · 2018年6月14日
Top
微信扫码咨询专知VIP会员