机器学习真实案例研究:基于文本描述的交易聚类

2020 年 8 月 15 日 THU数据派

作者:Ravindra Reddy Tamma

翻译:方星轩

校对:欧阳锦

本文约2200字,建议阅读5分钟。

本文为大家介绍了在日常的电子交易中对用户的交易信息进行聚类分析和建模,提供了用户分析的思路和建议。


标签:聚类 机器学习


我们正生活在数字技术时代。还记得你上次去到没有PayTM或BHIM UPI的商店是什么时候吗?很显然,这些数字交易技术已迅速成为我们日常生活的关键部分。

数字技术不仅是个人,也是各大金融机构的核心。依托着可靠的后台运行系统,执行多种选项的支付交易或资金转帐(例如,网上银行,ATM,信用卡或借记卡,UPI,POS机等)是一件非常顺利的事。

对于我们进行的每笔交易,都会针对它生成一个适当的描述消息,如下所示:


在本文中,我们将讨论一个金融机构的实际使用案例,该案例使用-聚类clustering(一种流行的机器学习算法)来为其客户群定制其产品。


本案例研究的动机

作为一家金融机构,始终根据客户的兴趣为他们量身定制报价,并以此来吸引现有客户群是很重要的事。对于任何金融机构而言,把握全方位的客户信息是一项重大挑战。

Twitter,WhatsApp,Facebook等社交媒体平台已成为描述客户兴趣和偏好的主要信息来源。金融机构使用第三方来源的数据通常会付出巨大的成本。即使如此,将社交媒体帐户映射到每一个客户也非常困难。

那么我们该如何解决呢?


“A partial solution to the above problem can be addressed by using in-house transaction data available with the institution”


“上述问题的部分解决方案可以通过使用该机构提供的内部交易数据来解决”

我们可以根据交易描述消息将客户执行的交易分为不同的类别。此方法可用于标记是否进行了食品,运动,衣服,账单支付,家庭,其他等类别的交易。如果客户的大部分交易都出现在特定类别中,那么我们可以对他/她的交易偏好有更好的预估。

这是我们采取的方法

来了解我们如何处理此问题,并为之找出解决方案时而采取的关键步骤吧。

  • 确定主题数量


我们从所有交易开始,将其描述消息映射到每个客户。首先,我们有一项重要的任务,即确定集群(clusters)(或)类别(catergories)(或)主题(topics)的数量。为了实现这个目标,我们使用主题建模( Topic Modelling)。

Topic Modelling

https://www.analyticsvidhya.com/blog/2018/10/stepwise-guide-topic-modeling-latent-semantic-analysis/


主题建模是一种对文档进行无监督分类的方法,即便我们不确定要查找的内容,它也可以找到适合的项目组。它主要使用狄利克雷分布(LDA)来拟合主题模型。

它将每个文档(即交易)视为主题的混合,而将每个主题视为文字的混合。举个例子:预算一词可能出现在电影主题和政治主题中。该LDA的基本假设是,样本中的每个观察值来自可以被生成统计模型解释的任意未知分布中。

主题建模可以解决我们的问题。这里有一种生成统计模型,该统计模型已经生成了交易描述中的所有文字,这些文字来自未知的任意分布(即未知的组或主题)。我们尝试估计/建立一个统计模型,以便预测一个单词属于特定主题的概率。


  • 主题连贯


我们已经通过手动查看各个主题中的热门关键字来确定主题总数,这可能有点主题不一致,而且我们还需要一种主观的方法来评估正确的主题数量。那么,我们使用主题连贯性( Topic Coherence)来确定正确的主题数。

Topic Coherence

https://rare-technologies.com/what-is-topic-coherence/


主题连贯性应用于该主题的前N个单词。它被定义为主题中单词的成对相似度得分的平均值/中位数。好的模型会产生连贯的主题,即主题连贯得分高的主题。

好的主题是可以用短标签描述的。因此,这就是主题一致性方法所捕获的内容:


是时候聚类了!

我们已经确定了主题/群集的总数(在我们的案例中为7个主题)。我们应该开始将每个交易描述消息分配给主题。在将文档分配给主题时,仅依靠主题建模可能无法产生准确的结果。


在这里,我们使用主题建模的输出以及其他一些功能,使用 K-Means clustering对交易描述消息进行聚类,我们将主要为K-Means集群构建功能集。


K-Means clustering

https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/


特征:

  • 基本特征


- 字数,位数,特殊符号数

- 最长数字序列长度,数字-字符比

- 平均,最长字长等

- 交易的周,日和月,当前日期,周末交易等

- 每月最后5天或每月前5天执行的交易

- 公众假期和节日交易等

 

  • 查找功能–使用行业中的顶级品牌和常用名词作为查找名称。计算与特定行业相关的交易描述中的单词数。


- 食品:蔬菜,多米诺骨牌Dominos(披萨品牌),FreshDirect(美国的在线食品杂货商),赛百味等

- 体育:棒球,阿迪达斯,足球,防滑钉等

- 卫生:药房,医院,体育馆等

- Bill&EMI:政策,能源,声明,时间表,取款,电话等。

- 娱乐:Netflix,Prime节目,Spotify,Soundcloud,酒吧

- 电子商务:亚马逊,沃尔玛,eBay,Ticketmaster等

 
  • 其他:Uber,Airbus,打包机等


主题建模功能

对使用TF-IDF方法生成的DTM矩阵的一元模型和二元模型执行主题建模。对于每个主题的交易描述的unigram一元模型和bigram 二元模型DTM矩阵,我们使其获得2组7种的不同概率。

 
最后的想法

每个交易描述大约有30个功能,我们执行K-Means聚类将每个交易描述分配给7个集群之一。


结果表明,聚类中心附近的观测结果大多标有正确的主题。少量错误的主题标签被分配在距离聚类中心较远的观察点。在手动查看的350个交易描述中,大约240个(准确率为69%)交易描述已正确标记了适当的主题。


现在,我们至少可以对内部客户的偏好和兴趣进行基本估算。我们可以通过发送定制的要约和选项使内部客户参与并改善业务。


尽管使用主题建模的方法相对新颖,实际上,大多数的信用卡的发行商都会使用对客户交易的兴趣进行分类。例如,美国运通公司一直在使用这种方法为其客户创建兴趣图。这样的兴趣图不仅将交易分为食物,旅行等主要类别,而且还创建了诸如泰国美食迷,野生动物爱好者等的细分。所有这些分类都仅仅基于交易数据的丰富性!


关于作者


Ravindra Reddy Tamma –数据科学家(Actify数据实验室)


Ravindra是Actify Data Labs的机器学习专家。他的专长包括信用风险分析,应用程序欺诈建模,OCR,文本挖掘以及将模型部署为API。他与贷方广泛合作,以开发应用程序,行为和收款记分卡。


Ravindra还使用非结构化征信机构标头信息为印度的无抵押贷款开发了国家级应用程序欺诈模型。除信用风险外,Ravindra在OCR,图像分析和文本挖掘方面拥有深厚的专业知识。Ravindra还在自动化生产数据管道和将机器学习模型部署为可扩展的API方面具有丰富的专业知识。


原本标题:
Real-World Machine Learning Case Study: Clustering Transactions Based on Text Descriptions

——EN D——

登录查看更多
1

相关内容

统计模型[stochasticmodel;statisticmodel;probabilitymodel]指以概率论为基础,采用数学统计方法建立的模型。有些过程无法用理论分析方法导出其模型,但可通过试验测定数据,经过数理统计法求得各变量之间的函数关系,称为统计模型。常用的数理统计分析方法有最大事后概率估算法、最大似然率辨识法等。常用的统计模型有一般线性模型、广义线性模型和混合模型。统计模型的意义在对大量随机事件的规律性做推断时仍然具有统计性,因而称为统计推断。
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
【2020新书】实战R语言4,323页pdf
专知会员服务
100+阅读 · 2020年7月1日
专知会员服务
80+阅读 · 2020年6月20日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
161+阅读 · 2020年5月14日
【论文扩展】欧洲语言网格:概述
专知会员服务
6+阅读 · 2020年3月31日
缺失数据统计分析,第三版,462页pdf
专知会员服务
108+阅读 · 2020年2月28日
【综述】金融领域中的深度学习,附52页论文下载
专知会员服务
163+阅读 · 2020年2月27日
基于图神经网络的聚类研究与应用
THU数据派
10+阅读 · 2020年5月29日
AAAI 2019 | 基于分层强化学习的关系抽取
PaperWeekly
20+阅读 · 2019年3月27日
文本分析与可视化
Python程序员
9+阅读 · 2019年2月28日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
【干货】Python无监督学习的4大聚类算法
新智元
14+阅读 · 2018年5月26日
教程 | 如何通过Scikit-Learn实现多类别文本分类?
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
3+阅读 · 2019年10月31日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
4+阅读 · 2018年5月14日
VIP会员
相关VIP内容
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
【2020新书】实战R语言4,323页pdf
专知会员服务
100+阅读 · 2020年7月1日
专知会员服务
80+阅读 · 2020年6月20日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
161+阅读 · 2020年5月14日
【论文扩展】欧洲语言网格:概述
专知会员服务
6+阅读 · 2020年3月31日
缺失数据统计分析,第三版,462页pdf
专知会员服务
108+阅读 · 2020年2月28日
【综述】金融领域中的深度学习,附52页论文下载
专知会员服务
163+阅读 · 2020年2月27日
相关资讯
基于图神经网络的聚类研究与应用
THU数据派
10+阅读 · 2020年5月29日
AAAI 2019 | 基于分层强化学习的关系抽取
PaperWeekly
20+阅读 · 2019年3月27日
文本分析与可视化
Python程序员
9+阅读 · 2019年2月28日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
【干货】Python无监督学习的4大聚类算法
新智元
14+阅读 · 2018年5月26日
教程 | 如何通过Scikit-Learn实现多类别文本分类?
相关论文
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
3+阅读 · 2019年10月31日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
4+阅读 · 2018年5月14日
Top
微信扫码咨询专知VIP会员