计算机视觉方向简介 | 驾驶员监控DMS

2020 年 3 月 27 日 计算机视觉life

点击上方“计算机视觉life”,选择“星标”

快速获得最新干货


作者 |  黄浴(奇点汽车美研中心首席科学家兼总裁)
来源 |  https://zhuanlan.zhihu.com/p/68127887




驾驶员监控系统(driver monitoring system,DMS) 一般是对L2-L3级别的自动驾驶系统而言的,对L4级别是没有意义的 ,除非系统仍然是需要安全员的测试环节。


监控的目的是发现驾驶员走神(distraction)、疲劳(fatigue)或者打瞌睡(drowsiness),甚至出现无法驾驶的意外情况,比如欺骗辅助驾驶系统用矿泉水代替双手在方向盘上,或者与乘客争吵打架等。另外,如果作为自动驾驶的研发阶段,监控驾驶员可以提供驾驶行为的第一手数据,甚至用于仿真模拟系统中。

非侵入式(non-intrusive)方法是监测的首选方法,而基于视觉的系统更具有吸引力。主要的视觉线索包括面部特征、手特征或身体特征。许多检测系统仅使用单个视觉线索,这种系统鲁棒性差,比如出现遮挡或光照变化时,容易被干扰。所以将多种视觉线索组合才是关键,也是具有挑战性的。

一个驾驶员面部监控系统是基于驾驶员面部图像处理来研究驾驶员身心状况的实时系统。可以从眼睑闭合、眨眼、凝视方向、打哈欠和头部运动等,检测到驾驶员状态。基本分成两大类:

①. 仅从眼部区域检测驾驶员;

②. 不仅可以从眼睛中检测,还可以从脸部和头部的其他区域检测。

下图是一个驾驶员脸部监控系统框图:检测人脸,还有眼睛和其他脸部特征,同时跟踪变化,提取症状,实现疲劳和分心检测。驾驶员面部监控系统的主要挑战是:



①“如何测量疲劳?”第一个挑战是如何准确定义疲劳以及如何测量疲劳; 疲劳与体温,皮肤电阻,眼球运动,呼吸频率,心率和大脑活动之间存在关系;第一个也是最重要的疲劳迹象会在眼睛中出现。

②“如何测量注意力?”第二个挑战是测量驾驶员对道路的注意力;可以从驾驶员头部和注视方向(gaze direction)估计驾驶员的注意力。

人脸检测方法可参照一般目标检测的方法,现在深度学习也已经在这个领域展示“肌肉”。人脸检测是一个老问题,人脸检测挑战的情况有以下一些:

  • 面内旋转;

  • 面外旋转;

  • 化妆品,胡须和眼镜的存在;

  • 表情(快乐,哭泣等);

  • 照明条件;

  • 脸部遮挡;

  • 实时处理要求。

眼部区域总是先被用于驾驶员症状提取,因为最重要的心理活动与眼睛活动有关。

眼睛检测的两大类:

  • 1) 基于红外光谱成像的方法;

  • 2) 基于视觉的方法;

除了眼睛,还可以检测其他面部成分:嘴巴,鼻子和脸部突出(Salient)点。

面部跟踪是分析驾驶员心理活动的主要手段。这种跟踪任务和一般单目标的跟踪是相似的,主要挑战包括:

  • 从三维空间到二维空间的映射而让一些信息丢失;

  • 具有复杂的形状或运动;

  • 部分遮挡;

  • 环境光线变化;

  • 实时跟踪要求。

与疲劳、分心和打瞌睡有关的症状提取包括:

  • 与眼部区域有关的症状:闭眼、眼睑之间的距离、眨眼速度快、凝视方向和跳跃运动;
  • 与嘴巴区域有关的症状:开/闭;
  • 与头部有关的症状:点头、头部姿势和头固定不变;
  • 与面部有关的症状:主要是表情。

下面分别举几个例子:

如图是一个基于深度神经网络(DNN)的驾驶员监控系统。



其基于脸部、双目和嘴巴三个区域的检测网络结构如下:



而基于单目(左眼)区域加嘴巴区域的检测网络结构如下:



如图是一个基于深度学习模型的人脸表情识别系统:输入图像检测面部和特征,从面部成分提取时空特征,使用预训练的分类器(图像取自CK+数据集(d))确定表情。



而整个深度学习模型是CNN和LSTM结合,如下图:



下图一个身体姿势(posture)识别驾驶员分心症状的系统。其症状类包括:喝酒,调整收音机,正确姿势驾驶,摆弄头发或化妆品,面向后面,与乘客交谈,用左手打手机通话,用右手打手机通话,用左手发短信, 用右手发短信。



系统的算法框图如图:包括面部检测器、手部检测器和皮肤区域分割。对于每个输出图像(即皮肤,面部,手),训练AlexNet和InceptionV3网络(5个AlexNet和5个InceptionV3),最后识别是一个加权组合输出。



参考文献

1. S Zafeiriou, C Zhang, Z Zhang,“A Survey on Face Detection in the wild: past, present and future”,CVIU,2015;

2. B Ko,“A Brief Review of Facial Emotion Recognition Based on Visual Information”,MDPI Sensors,2018;

3. B Reddy et al., “Real-time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks”,CVPR workshop,2017;

4. Y Abouelnaga et al.,“Real-time Distracted Driver Posture Classification”,NIPS workshop,2018。


交流群

欢迎加入公众号读者群一起和同行交流,目前覆盖SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群,请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

投稿、合作也欢迎联系:simiter@126.com

长按关注计算机视觉life


推荐阅读

最全综述 | 医学图像处理

最全综述 | 图像分割算法

最全综述 | 图像目标检测

目标检测技术二十年综述

综述 | CVPR2019目标检测方法进展
参加 CVPR 2019 技术见闻总结

现在投身于计算机视觉是否明智?

如何激怒一个自动驾驶(无人驾驶、智能汽车)爱好者?

原来CNN是这样提取图像特征的。

AI资源对接需求汇总:第1期
AI资源对接需求汇总:第2期
AI资源对接需求汇总:第3期

计算机视觉方向简介 | 人体骨骼关键点检测综述

计算机视觉方向简介 | 人脸识别中的活体检测算法综述

计算机视觉方向简介 | 目标检测最新进展总结与展望

计算机视觉方向简介 | 人脸表情识别

计算机视觉方向简介 | 人脸颜值打分

计算机视觉方向简介 | 深度学习自动构图

计算机视觉方向简介 | 基于RGB-D的3D目标检测

计算机视觉方向简介 | 人体姿态估计


给优秀的自己点个赞   

登录查看更多
1

相关内容

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《深度学习自动驾驶》技术综述论文,28页pdf
专知会员服务
153+阅读 · 2020年6月14日
最新《自然场景中文本检测与识别》综述论文,26页pdf
专知会员服务
69+阅读 · 2020年6月10日
最新《深度学习行人重识别》综述论文,24页pdf
专知会员服务
80+阅读 · 2020年5月5日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
172+阅读 · 2020年2月8日
【教程】自然语言处理中的迁移学习原理,41 页PPT
专知会员服务
95+阅读 · 2020年2月8日
专知会员服务
234+阅读 · 2020年1月23日
深度学习技术在自动驾驶中的应用
智能交通技术
26+阅读 · 2019年10月27日
计算机视觉方向简介 | 多视角立体视觉MVS
计算机视觉life
14+阅读 · 2019年10月10日
计算机视觉方向简介 | 多目标跟踪算法(附源码)
计算机视觉life
15+阅读 · 2019年6月26日
计算机视觉方向简介 | 人体姿态估计
计算机视觉life
26+阅读 · 2019年6月6日
计算机视觉方向简介 | 人脸表情识别
计算机视觉life
36+阅读 · 2019年5月15日
自动驾驶汽车技术路线简介
智能交通技术
15+阅读 · 2019年4月25日
计算机视觉方向简介 | 人脸识别中的活体检测算法综述
计算机视觉life
9+阅读 · 2018年9月26日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
136+阅读 · 2018年10月8日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
7+阅读 · 2018年3月22日
VIP会员
相关资讯
深度学习技术在自动驾驶中的应用
智能交通技术
26+阅读 · 2019年10月27日
计算机视觉方向简介 | 多视角立体视觉MVS
计算机视觉life
14+阅读 · 2019年10月10日
计算机视觉方向简介 | 多目标跟踪算法(附源码)
计算机视觉life
15+阅读 · 2019年6月26日
计算机视觉方向简介 | 人体姿态估计
计算机视觉life
26+阅读 · 2019年6月6日
计算机视觉方向简介 | 人脸表情识别
计算机视觉life
36+阅读 · 2019年5月15日
自动驾驶汽车技术路线简介
智能交通技术
15+阅读 · 2019年4月25日
计算机视觉方向简介 | 人脸识别中的活体检测算法综述
计算机视觉life
9+阅读 · 2018年9月26日
相关论文
Top
微信扫码咨询专知VIP会员