点击上方蓝字关注
深度学习面试100题(第81-85题)
81
下列哪个函数不可以做激活函数?
A、y = tanh(x)
B、y = sin(x)
C、y = max(x,0)
D、y = 2x
正确答案是:D
解析:
线性函数不能作为激活函数。
82
假设我们有一个如下图所示的隐藏层。隐藏层在这个网络中起到了一定的降纬作用。假如现在我们用另一种维度下降的方法,比如说主成分分析法(PCA)来替代这个隐藏层。
那么,这两者的输出效果是一样的吗?
A、是
B、否
正确答案是:B
解析:
PCA 提取的是数据分布方差比较大的方向,隐藏层可以提取有预测能力的特征
83
下图显示了训练过的3层卷积神经网络准确度,与参数数量(特征核的数量)的关系。
从图中趋势可见,如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么?
A、即使增加卷积核的数量,只有少部分的核会被用作预测
B、当卷积核数量增加时,神经网络的预测能力(Power)会降低
C、当卷积核数量增加时,导致过拟合
D、以上都不正确
正确答案是:C
解析:
网络规模过大时,就可能学到数据中的噪声,导致过拟合
84
在下面哪种情况下,一阶梯度下降不一定正确工作(可能会卡住)?
A、
B、
C、
正确答案是:B
解析:
这是鞍点(Saddle Point)的梯度下降的经典例子。另,本题来源于:https://www.analyticsvidhya.com/blog/2017/01/must-know-questions-deep-learning/。
85
假设你需要调整超参数来最小化代价函数(cost function),会使用下列哪项技术?
A、穷举搜索
B、随机搜索
C、Bayesian优化
D、都可以
正确答案是:D
题目来源:七月在线官网(https://www.julyedu.com/)——面试题库——笔试练习——深度学习
福利时刻:为了帮助大家更多的学习深度学习课程的相关知识,我们特意推出了深度学习-第四期课程。
更多资讯
请戳一戳
往期精选
人工智能 | AI人才薪酬是什么水平?看完惊呆了!
面试大题 | 教你如何迅速秒杀掉:99%的海量数据处理面试题
干货合集 | 【干货合集】一文读懂特征工程
分享一哈 | 从贝叶斯方法谈到贝叶斯网络
点击“阅读原文”,可在线报名