BAT机器学习面试题1000题(376~380题)

2018 年 8 月 27 日 七月在线实验室

点击上方蓝字关注




BAT机器学习面试题1000题(376~380题)


376题

解释对偶的概念


点击下方空白区域查看答案

解析:

一个优化问题可以从两个角度进行考察,一个是primal 问题,一个是dual 问题,就是对偶问题,一般情况下对偶问题给出主问题最优值的下界,在强对偶性成立的情况下由对偶问题可以得到主问题的最优下界,对偶问题是凸优化问题,可以进行较好的求解,SVM中就是将primal问题转换为dual问题进行求解,从而进一步引入核函数的思想。




377题

如何进行特征选择?


点击下方空白区域查看答案

解析:

特征选择是一个重要的数据预处理过程,主要有两个原因:一是减少特征数量、降维,使模型泛化能力更强,减少过拟合;二是增强对特征和特征值之间的理解常见的特征选择方式:

 1. 去除方差较小的特征


 2. 正则化。1正则化能够生成稀疏的模型。L2正则化的表现更加稳定,由于有用的特征往往对应系数非零。 


3. 随机森林,对于分类问题,通常采用基尼不纯度或者信息增益,对于回归问题,通常采用的是方差或者最小二乘拟合。一般不需要feature engineering、调参等繁琐的步骤。

它的两个主要问题,1是重要的特征有可能得分很低(关联特征问题),2是这种方法对特征变量类别多的特征越有利(偏向问题)。 


4. 稳定性选择。是一种基于二次抽样和选择算法相结合较新的方法,选择算法可以是回归、SVM或其他类似的方法。它的主要思想是在不同的数据子集和特征子集上运行特征选择算法,不断的重复,最终汇总特征选择结果,比如可以统计某个特征被认为是重要特征的频率(被选为重要特征的次数除以它所在的子集被测试的次数)。理想情况下,重要特征的得分会接近100%。稍微弱一点的特征得分会是非0的数,而最无用的特征得分将会接近于0。




378题

衡量分类器的好坏?


点击下方空白区域查看答案

解析:

 这里首先要知道TP、FN(真的判成假的)、FP(假的判成真)、TN四种(可以画一个表格)。

 几种常用的指标:

精度precision = TP/(TP+FP) = TP/~P (~p为预测为真的数量) 

召回率 recall = TP/(TP+FN) = TP/ P 

F1值: 2/F1 = 1/recall + 1/precision 

ROC曲线:ROC空间是一个以伪阳性率(FPR,false positive rate)为X轴,真阳性率(TPR, true positive rate)为Y轴的二维坐标系所代表的平面。其中真阳率TPR = TP / P = recall, 伪阳率FPR = FP / N 


更详细请点击:https://siyaozhang.github.io/2017/04/04/%E5%87%86%E7%A1%AE%E7%8E%87%E3%80%81%E5%8F%AC%E5%9B%9E%E7%8解析来源:@我愛大泡泡,链接:http://blog.csdn.net/woaidapaopao/article/details/77806273




379题

机器学习和统计里面的auc的物理意义是啥?


点击下方空白区域查看答案

解析:

auc是评价模型好坏的常见指标之一,详见:https://www.zhihu.com/question/39840928




380题

数据预处理


点击下方空白区域查看答案

解析:

1.缺失值,填充缺失值fillna:

  i. 离散:None,

 ii. 连续:均值。

 iii. 缺失值太多,则直接去除该列


2. 连续值:离散化。有的模型(如决策树)需要离散值 


3. 对定量特征二值化。核心在于设定一个阈值,大于阈值的赋值为1,小于等于阈值的赋值为0。如图像操作 


4. 皮尔逊相关系数,去除高度相关的列





题目来源:七月在线官网(https://www.julyedu.com/)——面试题库——面试大题——机器学习


分享一哈

分享完机器学习面试题

再和大家分享一哈

我们的

深度学习-第四期

课程火热报名中喔

还没报名的小伙伴们

抓紧时间喽

2人及2人以上组团

立减100元

点击下方“阅读原文

可在线报名

或添加客服咨询

julyedukefu_02

最关键的是

参与抽奖

免费送

深度学习第四期课程  

还能组团玩,一人中奖,全队中奖

还在等什么

还有两天活动就截止了喔

快来和我一起组团抽奖吧

长按识别小程序,参与抽奖

👇


 更多资讯

 请戳一戳

往期推荐

数学不好,怎么办?这6大数学技能,AI “必备”

机器学习中的弯路该如何避免?5个新人常见问题和3个学习规划

想做Python开发,这14种常用Python模块,你必须知道!

深度学习难吗?如果你连这25个概念都不知道,当然难!

这10道题会做,年薪百万木问题

45万AI面经 |  面试offer拿不停,人称“offer收割机”

【干货合集】关于支持向量机(SVM)的原理,你了解多少?(万字长文 速收)

点击“阅读原文”,可在线报名

登录查看更多
9

相关内容

【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
354+阅读 · 2020年2月15日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
BAT机器学习面试1000题(716~720题)
七月在线实验室
19+阅读 · 2018年12月17日
BAT机器学习面试题1000题(331~335题)
七月在线实验室
12+阅读 · 2018年8月13日
BAT机器学习面试题1000题(316~320题)
七月在线实验室
14+阅读 · 2018年1月18日
机器学习面试题精讲(一)
七月在线实验室
4+阅读 · 2018年1月11日
BAT机器学习面试题及解析(266-270题)
七月在线实验室
6+阅读 · 2017年12月13日
BAT题库 | 机器学习面试1000题系列(第226~230题)
七月在线实验室
9+阅读 · 2017年11月27日
BAT题库 | 机器学习面试1000题系列(第211~215题)
七月在线实验室
9+阅读 · 2017年11月22日
BAT题库 | 机器学习面试1000题系列(第196~200题)
七月在线实验室
17+阅读 · 2017年11月16日
BAT机器学习面试1000题系列(第116~120题)
七月在线实验室
16+阅读 · 2017年10月24日
BAT机器学习面试1000题系列(第76~80题)
七月在线实验室
5+阅读 · 2017年10月13日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2017年7月6日
VIP会员
相关VIP内容
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
354+阅读 · 2020年2月15日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
相关资讯
BAT机器学习面试1000题(716~720题)
七月在线实验室
19+阅读 · 2018年12月17日
BAT机器学习面试题1000题(331~335题)
七月在线实验室
12+阅读 · 2018年8月13日
BAT机器学习面试题1000题(316~320题)
七月在线实验室
14+阅读 · 2018年1月18日
机器学习面试题精讲(一)
七月在线实验室
4+阅读 · 2018年1月11日
BAT机器学习面试题及解析(266-270题)
七月在线实验室
6+阅读 · 2017年12月13日
BAT题库 | 机器学习面试1000题系列(第226~230题)
七月在线实验室
9+阅读 · 2017年11月27日
BAT题库 | 机器学习面试1000题系列(第211~215题)
七月在线实验室
9+阅读 · 2017年11月22日
BAT题库 | 机器学习面试1000题系列(第196~200题)
七月在线实验室
17+阅读 · 2017年11月16日
BAT机器学习面试1000题系列(第116~120题)
七月在线实验室
16+阅读 · 2017年10月24日
BAT机器学习面试1000题系列(第76~80题)
七月在线实验室
5+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员