【UC San Diego】最新「三维深度学习(3D DL):过去与未来」教程,156页ppt

2020 年 4 月 20 日 专知

【导读】三维深度学习对于处理真实场景数据具有重要的意义,3D理解对于很多应用程序都是至关重要的,比如自动驾驶汽车、自动机器人、虚拟现实和增强现实。来自UC San Diego的苏昊老师一直以来研究3D深度学习,他的一份3D Deep Learning教程,共有156页ppt,是学习了解三维深度学习的重要资料。



地址:

http://cseweb.ucsd.edu/~haosu/talks.html#_3d_deep_learning



视频地址:

https://youtu.be/vfL6uJYFrp4


深度学习最近很流行,在处理文本、声音或图像等任务时都表现出色。由于其出色的性能,已经有人努力将其应用于更具挑战性的场景,例如,3D数据处理。3D理解对于很多应用都是至关重要的,比如自动驾驶汽车、自动机器人、虚拟现实和增强现实。与以常规像素阵列为主的二维图像不同,三维数据可以由激光雷达传感器等不规则的三维点云来表示。这对深入的架构设计提出了挑战。


本教程将介绍用于3D理解的3D数据分析的深度学习算法,如3D语义分割、3D对象检测和跟踪。尽管取得了这些进展,但在静态和动态环境中,诸如活动识别、行为预测和推断三维场景中物体的空间关系等问题仍然存在根本性的挑战。此外,由于我们的世界本质上是3D的,因此3D深度学习对于表示学习对输入扰动具有鲁棒性,并推广到具有高样本效率的真实世界变化(例如,转换不变性)是至关重要的。本教程提供了一个及时的机会,让计算机视觉社区参与到3D深度学习的独特挑战和机会中来。


苏昊(University of California, San Diego)2017年起在UCSD计算机工程学院担任助理教授,主要研究方向为人工智能领域的结构理解、形状理解、场景理解,研究成果主要集中在机器学习、计算机图像等方面,应用领域包括自动驾驶及VR/AR等方面。

http://cseweb.ucsd.edu/~haosu/


目录内容:

Part I: 3D Data, by Hao Su 

Part II: Classification, by Hao Su  

Part II: Segmentation & Detection, by Jiayuan Gu  

Part III: 3D Data Synthesis, by Minghua Liu



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“3DDL” 就可以获取最新「三维深度学习(3D DL):过去与未来」教程,156页ppt》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
3

相关内容

一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【CVPR2019教程】视频理解中的图表示学习
专知
43+阅读 · 2019年6月20日
「Awesome」3D机器学习资源汇总
专知
7+阅读 · 2019年3月14日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
136+阅读 · 2018年10月8日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
Top
微信扫码咨询专知VIP会员