YOLO 是一种快速紧凑的开源对象检测模型,与其它网络相比,同等尺寸下性能更强,并且具有很不错的稳定性,是第一个可以预测对象的类别和边界框的端对端神经网络。YOLO 家族一直有着旺盛的生命力,从YOLO V1一直到”V5“,凭借着不断的创新和完善,一直被计算机视觉工程师作为对象检测的首选框架之一。
YOLO v5 模型的头部与之前的 YOLO V3 和 V4 版本相同。
其性能是现今最先进的对象检测技术之一,并在推理速度上是目前最强。
为此,咕泡科技现邀请到「人工智能实战专家 - 唐宇迪博士」,专为深度学习的同学开设了「深度学习缺陷检测实战篇」。课程将会结合源码与真实数据集展开项目实战,全方位读缺陷检测项目与科研流程。
内容仅截选部分,在「深度学习缺陷检测实战训练营」中 , 将帮助同学们快速掌握AI领域两大核心模块:检测与分割,并基于真实数据集进行项目实战。
01 课程内容
上课时间:6月29日-30日,每晚20:00-22:30
课程服务:录播+直播授课+讲师答疑+课堂笔记+作业布置
神经网络模型细节知识点分析.
神经网络模型整体架构解读.
计算机视觉核心模型-卷积神经网络.
卷积神经网络整体架构及其参数设计.
缺陷数据标注与数据集构建.
YOLOV5模型训练全流程解读.
基于注意力机制的可变形DETR缺陷检测模型.
如何快速进行论文实验分析与模板化建模.
02 两天你将收获
开放全部代码,课后复用方便高效
讲师带练,伴随式编程环境