一键cosplay各路动漫人物!快手的这个BlendGAN火了 | NeurIPS 2021

2021 年 11 月 21 日 量子位
金磊 发自 凹非寺
量子位 报道 | 公众号 QbitAI

动漫、艺术作品里的人物,他们极具张力的形象往往给人们留下深刻的印象。

但如果说现在,你也可拥有他们的同款造型呢?

没错,依旧来自是“无所不能”的GAN

只要把你pick好的形象“投喂”进去,接下来妆发的工作交给它就行了:

红的、黄的、蓝的、白的……发色随意改变,风格也随之变换。

这就是来自快手的BlendGAN,而且这项工作还被顶会NeurIPS 2021接收。

而与以往“变妆”GAN不同的是,BlendGAN号称能驾驭的风格是——任意

是有种“百变大咖秀”的那味了。

于是乎,这个项目成功在网上引起了众多网友的围观。

如何丝滑变妆?

那么,怎样拥有动漫人物同款造型呢?

很简单,只需要准备2张照片:

  • 一张生活照

  • 一张动漫人物造型

现在在Hugging Face里已经有了在线可玩的demo。

最简单的办法就是把这两张照片上传进去,等待一会儿就可以出结果了。

当然,稍微“技术”点的方法就是自己跑一遍程序了。

就在这两天,BlendGAN在GitHub上也已开源。

首先需要下载一些预训练模型,包括BlendGAN模型、PSP编码器模型和Style编码器模型。

然后仅需几句Python代码,便可出效果。

例如用随机人脸代码生成图像对,就输入:

python generate_image_pairs.py --size 1024 --pics N_PICS --ckpt ./pretrained_models/blendgan.pt --style_img ./test_imgs/style_imgs/100036.png --outdir results/generated_pairs/reference_guided/

若是要给照片换风格,则输入:

python style_transfer_folder.py --size 1024 --ckpt ./pretrained_models/blendgan.pt --psp_encoder_ckpt ./pretrained_models/psp_encoder.pt --style_img_path ./test_imgs/style_imgs/ --input_img_path ./test_imgs/face_imgs/ --outdir results/style_transfer/

要生成插值视频,则:

python gen_video.py --size 1024 --ckpt ./pretrained_models/blendgan.pt --psp_encoder_ckpt ./pretrained_models/psp_encoder.pt --style_img_path ./test_imgs/style_imgs/ --input_img_path ./test_imgs/face_imgs/ --outdir results/inter_videos/

为什么可以hold住任意风格?

那么快手的这个BlendGAN,为什么可以同时驾驭这么多的风格?

据研究介绍,团队首先是利用灵活的混合策略和通用的艺术数据集,来生成任意样式化的脸。

具体来说,就是在通用艺术数据集上,训练一个自监督Style编码器来提取任意样式的表示。

在生成器部分,则提出了一种叫做加权混合模块 (WBM)的方法,来隐式混合人脸和样式表示,并控制任意的程式化效果。

以往诸如StyleGAN2在这个步骤中,不同分辨率层(resolution layer)负责生成图像中的不同特征,而团队认为它们在不同层的混合权值不应当是一致的。

因此,研究人员将人脸和风格latent代码转换到它们的W空间,然后再由WBM进行一个组合的工作。

由此得到的结果显示,与以往方法比较,BlendGAN能够得到更加逼真的效果。

作者介绍

本文的通讯作者是Li Qiang,现任快手Y-tech的算法工程师。

本科和硕士就读于华中科技大学;博士毕业于悉尼科技大学,师从陶大程教授。

其主要研究方向为深度学习、机器学习和概率图形模型,对卷积神经网络、深度生成模型、表示学习和结构化预测感兴趣。

最后,想试试变妆的小伙伴,可以戳下方链接体验一下~

在线试玩:

https://huggingface.co/spaces/akhaliq/BlendGAN

参考链接:

[1]https://pythonrepo.com/repo/onion-liu-BlendGAN-python-deep-learning
[2]https://github.com/onion-liu/BlendGAN
[3]https://arxiv.org/pdf/2110.11728.pdf

—  —

本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

直播免费报名!

与AI大咖一起预见智能科技新未来

量子位「MEET2022智能未来大会」将于 11.30日全程直播, 李开复 博士、 张亚勤 教授、 百度 集团副总裁 吴甜 IBM 大中华区CTO 谢东 京东 集团副总裁 何晓冬 商汤 科技联创 杨帆 小冰 公司CEO 李笛 等多位行业重要嘉宾将带来主题演讲,期待再次为大家呈现精彩内容!
识别左侧二维码, 即刻预约直播 ;识别右侧二维码, 加入大会交流群 、还可抽取惊喜礼品&现金红包哦~

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~



登录查看更多
0

相关内容

NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
12+阅读 · 2021年12月9日
ICLR 2022 评审出炉!来看看得分最高8份的31篇论文是什么!
专知会员服务
16+阅读 · 2021年5月13日
【CVPR2021】GAN人脸预训练模型
专知会员服务
24+阅读 · 2021年4月10日
【NeurIPS 2020 】神经网络结构生成优化
专知会员服务
21+阅读 · 2020年10月24日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
26+阅读 · 2020年10月9日
一份简明有趣的Python学习教程,42页pdf
专知会员服务
77+阅读 · 2020年6月22日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
36+阅读 · 2019年12月15日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
15+阅读 · 2019年10月15日
学习一个宫崎骏画风的图像风格转换GAN
AI科技评论
18+阅读 · 2020年3月13日
Github 项目推荐 | PyTorch 实现的 GAN 文本生成框架
AI研习社
35+阅读 · 2019年6月10日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
0+阅读 · 2022年4月14日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
12+阅读 · 2021年12月9日
ICLR 2022 评审出炉!来看看得分最高8份的31篇论文是什么!
专知会员服务
16+阅读 · 2021年5月13日
【CVPR2021】GAN人脸预训练模型
专知会员服务
24+阅读 · 2021年4月10日
【NeurIPS 2020 】神经网络结构生成优化
专知会员服务
21+阅读 · 2020年10月24日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
26+阅读 · 2020年10月9日
一份简明有趣的Python学习教程,42页pdf
专知会员服务
77+阅读 · 2020年6月22日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
36+阅读 · 2019年12月15日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
15+阅读 · 2019年10月15日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员