极市直播丨长尾分布最新技术分享!汤凯华:利用因果分析解决通用的长尾分布问题

2020 年 12 月 6 日 极市平台
↑ 点击蓝字关注极市平台 识别先机 创造未来


| 极市线上分享  第73期 |


一直以来,为让大家更好地了解学界业界优秀的论文和工作,极市已邀请了超过90位技术大咖嘉宾,并完成了72期极市线上直播分享。往期分享请前往bbs.cvmart.net/topics/149或直接阅读原文,也欢迎各位小伙伴自荐或推荐更多多优秀的技术嘉宾到极市进行技术分享,与大家一起交流学习~~

长尾分布是指常见的不均衡数据分布,该问题大大降低了机器学习模型的鲁棒性,并且需要利用高昂的成本去采集罕见数据才能解决。传统的解决方案不仅依赖提前预知未来数据的分布,而且也容易对罕见数据过拟合。

本次分享,我们邀请到了来自南洋理工大学的汤凯华博士,为我们分享他团队NeurIPS 2020的论文“Long-TailedClassification by Keeping the Good and Removing the Bad Momentum Causal Effect”。该工作利用因果分析技术,首次实现不需要提前预知数据分布情况下适用的长尾分布去偏见算法。并且该方法不增加任何额外的训练负担,可以轻易适用于各种场景,如我们在图片分类,物体检测,实例分割任务上都取得了显著提升。

01

直播信息

时间

2020年12月10日(周四)20:00-21:00


主题

利用因果分析解决通用的长尾分布问题

02

嘉宾介绍


汤凯华

南洋理工大学计算机系三年级在读博士生,导师张含望。就读博士前在上海交通大学IEEE班获得学士学位,并在交大-早稻田双硕士联培项目中获得双硕士学位。研究兴趣包括:场景图生成与理解,长尾分布下的识别,视觉推理,和因果分析在计算机视觉上的应用。

更多信息可见个人主页:

https://kaihuatang.github.io/ 


03

关于分享

分享大纲

1.     长尾分布问题简介

2.     相关工作

3.     关于长尾分布的因果分析

4.     提出的De-confound TDE算法

5.     实验结果和优点分析


论文

Long-TailedClassification by Keeping the Good and Removing the Bad Momentum Causal Effect

论文地址:

https://arxiv.org/abs/2009.12991

代码地址:

https://github.com/KaihuaTang/Long-Tailed-Recognition.pytorch

04

参与方式

关注“极市平台”公众号,回复“73“汤凯华获取免费直播链接


05

往期回顾

极市平台专注分享计算机视觉前沿资讯和技术干货,特邀请行业内专业牛人嘉宾为大家分享视觉领域内的干货及经验,目前已成功举办72 期线上分享 。近期在线分享可 点击以下标题 查看:

……


更多往期分享请浏览:极市计算机视觉技术分享集锦
http://bbs.cvmart.net/topics/149/cvshare),也可以点击阅读原文获取。

在"极市平台"公众号后台回复期数或者分享嘉宾名字,即可获取极市平台对应期在线分享资料。

06

关于极市平台

极市(Extreme Mart) 是深圳极视角科技有限公司旗下AI开发者生态,面向计算机视觉算法工程师,为开发者提供算法开发环境、真实数据项目实战、自动测试、加速工具、算法封装等全方位平台技术与工程支持,同时提供技术干货、大咖分享、社区交流、竞赛活动等丰富的内容与服务。
官网: www.cvmart.net

有任何想了解的内容请在本帖下留言,嘉宾会在直播中回答大家的问题哦~


觉得有用麻烦给个在看啦~  

登录查看更多
4

相关内容

【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
专知会员服务
41+阅读 · 2021年1月18日
专知会员服务
62+阅读 · 2021年1月6日
专知会员服务
37+阅读 · 2020年9月27日
深度学习目标检测方法综述
专知会员服务
273+阅读 · 2020年8月1日
专知会员服务
160+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
VALSE Webinar 19-22期 医学影像处理与分析
VALSE
9+阅读 · 2019年8月30日
极市分享|王晋东 迁移学习中的领域自适应方法
极市平台
10+阅读 · 2017年12月11日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
专知会员服务
41+阅读 · 2021年1月18日
专知会员服务
62+阅读 · 2021年1月6日
专知会员服务
37+阅读 · 2020年9月27日
深度学习目标检测方法综述
专知会员服务
273+阅读 · 2020年8月1日
专知会员服务
160+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Top
微信扫码咨询专知VIP会员