在机器人研究领域,给定某一特定任务之后,如何规划机器人的运动方式至关重要。
最近,GitHub 上开源了一个存储库,该库实现了机器人技术中常用的一些路径规划算法,大部分代码是用 Python 实现的。值得一提的是,开发者用 plotting 为每种算法演示了动画运行过程,直观清晰。
![]()
https://github.com/zhm-real/PathPlanning
该开源库中实现的路径规划算法包括
基于搜索和基于采样的规划算法
,具体目录如下图所示:
![]()
基于搜索的路径规划算法已经较为成熟且得到了广泛应用,常常被用于游戏中人物和移动机器人的路径规划。
![]()
![]()
![]()
![]()
![]()
Anytime Repairing A* (ARA*) 搜索算法
![]()
![]()
![]()
![]()
![]()
![]()
![]()
与基于搜索不同,基于采样的路径规划算法不需要显式构建整个配置空间和边界,并且在高维度的规划问题中得到广泛应用。
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
N =1000 时,Informed rrt * 算法
![]()
![]()
https://blog.csdn.net/RoboChengzi/article/details/104096663
http://www.chenjianqu.com/show-137.html
Amazon SageMaker实战教程(视频回顾)
Amazon SageMaker 是一项完全托管的服务,可以帮助机器学习开发者和数据科学家快速构建、训练和部署模型。Amazon SageMaker 完全消除了机器学习过程中各个步骤的繁重工作,让开发高质量模型变得更加轻松。
10月15日-10月22日,机器之心联合AWS举办3次线上分享,全程回顾如下,复制链接到浏览器即可观看。
另外,我们准备了Amazon SageMaker 1000元服务抵扣券,帮助开发者体验各项功能。点击阅读原文,即可领取。
![]()
第一讲:Amazon SageMaker Studio详解
主要介绍相关组件,如studio、autopilot等,并通过在线演示展示这些核心组件对AI模型开发效率的提升。
-
视频回顾地址:
https://app6ca5octe2206.h5.xiaoeknow.com/v1/course/alive/l_5f715443e4b005221d8ea8e3
第二讲:使用Amazon SageMaker 构建一个情感分析「机器人」
主要介绍情感分析任务背景、进行基于Bert的情感分析模型训练、利用AWS数字资产盘活解决方案进行基于容器的模型部署。
第三讲:DGL图神经网络及其在Amazon SageMaker上的实践
主要介绍图神经网络、DGL在图神经网络中的作用、图神经网络和DGL在欺诈检测中的应用和使用Amazon SageMaker部署和管理图神经网络模型的实时推断。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:content@jiqizhixin.com