比AlphaGo Zero更强的AlphaZero来了!8小时解决一切棋类!| 快讯

2017 年 12 月 6 日 AI研习社 PENG Bo

本文作者PENG Bohttp://t.cn/RY3MKSS本文首发于作者的知乎专栏《技术备忘录》, AI研习社获其授权发布。

读过AlphaGo Zero论文的同学,可能都惊讶于它的方法的简单。另一方面,深度神经网络,是否能适用于国际象棋这样的与围棋存在诸多差异的棋类?MCTS(蒙特卡洛树搜索)能比得上alpha-beta搜索吗?许多研究者都曾对此表示怀疑。

但今天AlphaZero来了(arxiv.org/pdf/1712.0181),它破除了一切怀疑,通过使用与AlphaGo Zero一模一样的方法(同样是MCTS+深度网络,实际还做了一些简化),它从零开始训练:

  • 4小时就打败了国际象棋的最强程序Stockfish!

  • 2小时就打败了日本将棋的最强程序Elmo!

  • 8小时就打败了与李世石对战的AlphaGo v18!

在训练后,它面对Stockfish取得100盘不败的恐怖战绩,而且比之前的AlphaGo Zero也更为强大(根据论文后面的表格,训练34小时的AlphaZero胜过训练72小时的AlphaGo Zero)。

这令人震惊,因为此前大家都认为Stockfish已趋于完美,它的代码中有无数人类精心构造的算法技巧。

然而现在Stockfish就像一位武术大师,碰上了用枪的AlphaZero,被一枪毙命。

在reddit的国象版面的讨论中(Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm • r/chesshttp://t.cn/RY3x1kK),大家纷纷表示AlphaZero已经不是机器的棋了,是神仙棋,非常优美,富有策略性,更能深刻地谋划(maneuver),完全是在调戏Stockfish。

喜欢国象的同学注意了:AlphaZero不喜欢西西里防御。

训练过程极其简单粗暴。超参数,网络架构都不需要调整。无脑上算力,就能解决一切问题。

Stockfish和Elmo,每秒种需要搜索高达几千万个局面。

AlphaZero每秒种仅需搜索几万个局面,就将他们碾压。深度网络真是狂拽炫酷。

当然,训练AlphaZero所需的计算资源也是海量的。这次Deepmind直接说了,需要5000个TPU v1作为生成自对弈棋谱。

不过,随着硬件的发展,这样的计算资源会越来越普及。未来的AI会有多强大,确实值得思考。

个人一直认为MCTS+深度网络是非常强的组合,因为MCTS可为深度网络补充逻辑性。我预测,这个组合未来会在更多场合显示威力,例如有可能真正实现自动写代码,自动数学证明。

为什么说编程和数学,因为这两个领域和下棋一样,都有明确的规则和目标,有可模拟的环境。

(在此之前,深度学习的调参党和架构党估计会先被干掉...... 目前的很多灌水论文,电脑以后自己都可以写出来)

也许在5到20年内,我们会看到《Mastering Programming and Mathematics by General Reinforcement Learning》。然后许多人都要自谋出路了......

上海交通大学博士讲师团队

从算法到实战应用

涵盖CV领域主要知识点

手把手项目演示

全程提供代码

深度剖析CV研究体系

轻松实战深度学习应用领域!

▼▼▼  

(限时早鸟票~)


新人福利



关注 AI 研习社(okweiwu),回复  1  领取

【超过 1000G 神经网络 / AI / 大数据,教程,论文】



100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识

  

登录查看更多
0

相关内容

AlphaGo Zero是谷歌下属公司Deepmind的新版程序。从空白状态学起,在无任何人类输入的条件下,AlphaGo Zero能够迅速自学围棋,并以100:0的战绩击败“前辈”。 2017年10月19日凌晨,在国际学术期刊《自然》(Nature)上发表的一篇研究论文中,谷歌下属公司Deepmind报告新版程序AlphaGo Zero:从空白状态学起,在无任何人类输入的条件下,它能够迅速自学围棋,并以100:0的战绩击败“前辈”。Deepmind的论文一发表,TPU的销量就可能要大增了。其100:0战绩有“造”真嫌疑。
FPGA加速系统开发工具设计:综述与实践
专知会员服务
65+阅读 · 2020年6月24日
最新《经济学中的强化学习》2020大综述,42页pdf128篇文献
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
2019必读的十大深度强化学习论文
专知会员服务
57+阅读 · 2020年1月16日
【强化学习】深度强化学习初学者指南
专知会员服务
179+阅读 · 2019年12月14日
生成式对抗网络GAN异常检测
专知会员服务
115+阅读 · 2019年10月13日
李开复:听AI大佬吐槽真实的人工智能
算法与数学之美
4+阅读 · 2018年8月26日
一万小时贫穷定律
互联网er的早读课
5+阅读 · 2018年8月22日
AlphaZero 实战:从零学下五子棋(附代码)
AI研习社
3+阅读 · 2018年1月13日
从零基础成为深度学习高手——Ⅰ
计算机视觉战队
7+阅读 · 2017年12月7日
一张图看懂AlphaGo Zero
AI前线
6+阅读 · 2017年11月17日
已删除
将门创投
5+阅读 · 2017年10月20日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
3+阅读 · 2018年10月8日
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关VIP内容
FPGA加速系统开发工具设计:综述与实践
专知会员服务
65+阅读 · 2020年6月24日
最新《经济学中的强化学习》2020大综述,42页pdf128篇文献
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
2019必读的十大深度强化学习论文
专知会员服务
57+阅读 · 2020年1月16日
【强化学习】深度强化学习初学者指南
专知会员服务
179+阅读 · 2019年12月14日
生成式对抗网络GAN异常检测
专知会员服务
115+阅读 · 2019年10月13日
相关资讯
李开复:听AI大佬吐槽真实的人工智能
算法与数学之美
4+阅读 · 2018年8月26日
一万小时贫穷定律
互联网er的早读课
5+阅读 · 2018年8月22日
AlphaZero 实战:从零学下五子棋(附代码)
AI研习社
3+阅读 · 2018年1月13日
从零基础成为深度学习高手——Ⅰ
计算机视觉战队
7+阅读 · 2017年12月7日
一张图看懂AlphaGo Zero
AI前线
6+阅读 · 2017年11月17日
已删除
将门创投
5+阅读 · 2017年10月20日
Top
微信扫码咨询专知VIP会员