中科院发布了目标追踪数据集,1万多条视频,150万个边界框 | 快来下载

2018 年 12 月 30 日 量子位
动栗 发自 凹非寺 
量子位 出品 | 公众号 QbitAI

中科院发布了一个目标追踪数据集,叫做Got-10k。很大,很精致。

它包含了超过10,000条视频,主角都是在现实世界里移动的物体,分成560多个类别

物体的边界框全部是手动标记,总计超过150万个

除此之外,数据集还是个Benchmark,可以用来衡量模型的性能,也已经有排行榜了。

官方还提供Python工具包,以便小伙伴们用这个Benchmark来测试自己的AI。

那么,来仔细观察一下数据集,吧。

事无巨细

除了规模大,Got-10k还有许多重要的特质。

通用类别 (Generic Classes)

数据集是以WordNet英文词汇数据库作为骨架,搭建起来的。分成5个大类:

动物 (Animal) 、人造物体 (Artifact) 、人物 (Person) 、然物体 (Natural Object) ,以及Part

大类之下再细分,一共563个类别

上面讲的是目标类别,只是数据的其中一个标签。

另一个标签是动作类别,一共分为87种。一部分按照WordNet来划分,还有一部分是数据收集者定义的。

单样本学习 (One-Shot Learning)

为了训练出的模型能有更强的泛化能力,训练集和测试集之间不存在交集。

模型可以用少量的数据去学习分类,这样也能避免测试结果偏向AI熟悉的那些样本类别。

统一训练数据 (Unified Training Data)

所有方法都用相同的训练数据。依靠这样的协议,来保障所有追踪器之间的公平对比。

额外标记 (Extra Labeling)

除了目标类别、动作类别和标记框之外,还有其他标签。

比如,目标可见比 (针对遮挡或者出画的情况) ,负责监督那些难度比较大的任务。

有效评估 (Efficient Evaluation)

测试集包含180段视频,分属于84个目标类别,32个动作类别,用来衡量模型的追踪能力。

万事俱备,只差你了

现在,完整的GOT-10k数据集已经可以下载了。

并且,评估服务器 (Evaluation Server) 准备好为各路模型打分了,排行榜也会实时更新。

温暖的官方为小伙伴们提供了Python工具包,用来运行实验,方便在Benchmark上评估性能。

另外,除了Python工具包,还有MABLAB工具包

你还不来么?

 这样好像可以玩一天

数据集传送门:
http://got-10k.aitestunion.com/downloads

Python工具包:
https://github.com/got-10k/toolkit

MATLAB工具包:
https://github.com/got-10k/toolkit-matlab

数据集论文:
https://arxiv.org/abs/1810.11981

年度评选报名

加入社群

量子位AI社群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「好看」吧 !



登录查看更多
1

相关内容

【ICML2020】小样本目标检测
专知会员服务
90+阅读 · 2020年6月2日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
44+阅读 · 2020年4月10日
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
67+阅读 · 2020年3月9日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
35+阅读 · 2019年12月15日
零样本图像分类综述 : 十年进展
专知会员服务
126+阅读 · 2019年11月16日
训练目标检测模型只需要这 6 行代码
AI科技评论
8+阅读 · 2019年8月19日
视频目标识别资源集合
专知
25+阅读 · 2019年6月15日
用PyTorch做物体检测和追踪
AI研习社
12+阅读 · 2019年1月6日
一文带你入门视频目标分割(附数据集)
THU数据派
19+阅读 · 2017年10月10日
入门 | 一文概览视频目标分割
机器之心
10+阅读 · 2017年10月6日
Arxiv
3+阅读 · 2019年3月29日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关VIP内容
【ICML2020】小样本目标检测
专知会员服务
90+阅读 · 2020年6月2日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
44+阅读 · 2020年4月10日
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
67+阅读 · 2020年3月9日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
35+阅读 · 2019年12月15日
零样本图像分类综述 : 十年进展
专知会员服务
126+阅读 · 2019年11月16日
相关资讯
训练目标检测模型只需要这 6 行代码
AI科技评论
8+阅读 · 2019年8月19日
视频目标识别资源集合
专知
25+阅读 · 2019年6月15日
用PyTorch做物体检测和追踪
AI研习社
12+阅读 · 2019年1月6日
一文带你入门视频目标分割(附数据集)
THU数据派
19+阅读 · 2017年10月10日
入门 | 一文概览视频目标分割
机器之心
10+阅读 · 2017年10月6日
Top
微信扫码咨询专知VIP会员