斯坦福陈丹琦博士论文:神经网络阅读理解与更多【附156页pdf】

2018 年 12 月 15 日 专知

作者简介:陈丹琦,清华本科(姚班),斯坦福博士即将毕业,师从Christopher Manning,毕业后成为普林斯顿大学计算机学院助理教授,在学期间曾在ACL,EMNLP,NIPS等自然语言处理与机器学习定会发表多篇文章。

作者主页:

https://cs.stanford.edu/people/danqi/


论文摘要

教机器理解人类语言文档是人工智能中最难以捉摸和长期存在的挑战之一。本文探讨了阅读理解的问题:如何构建计算机系统来阅读文章和回答理解问题。一方面,我们认为阅读理解是评价计算机系统对人类语言理解程度的一项重要任务。另一方面,如果我们能够构建高性能的阅读理解系统,那么它将成为问答和对话系统等应用的关键技术。本文以神经阅读理解为研究对象:一种基于深度神经网络的阅读理解模型。与传统的稀疏的、手工设计的基于特征的模型相比,这些端到端神经模型在学习丰富的语言现象方面更加有效,并且在所有现代阅读理解基准上的表现都有很大的提高。本文由两部分组成。第一部分是对神经阅读理解的本质进行概括,介绍我们在构建有效的神经阅读理解模型方面所做的努力,更重要的是了解神经阅读理解模型实际学到了什么,以及解决当前任务需要什么样的语言理解深度。我们还总结了该领域的最新进展,讨论了该领域的未来发展方向和有待解决的问题。在本文的第二部分,我们探讨了如何在最近神经阅读理解成功的基础上建立实际应用。特别是,我们开创了两个新的研究方向:1)如何将信息检索技术与神经阅读理解相结合,解决大规模开放领域的问题;(2)如何从当前的单圈、跨步阅读理解模式中构建会话问答系统。我们在DrQA和CoQA项目中实现了这些想法,并证明了这些方法的有效性。我们相信他们对推动未来的语言技术有很大帮助。


请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

  • 后台回复“NMCCDQ” 就可以获取论文全文下载链接~


部分内容摘要:

神经阅读理解的发展历程:数据集(黑色)与模型(蓝色):


斯坦福带有注意力机制的阅读方法介绍

神经阅读理解的应用:Watson中用到的DeepQA

开放域问答系统:DrQA


-END-

专 · 知

人工智能领域26个主题知识资料全集获取与加入专知人工智能服务群: 欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!


请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!


请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

 AI 项目技术 & 商务合作:bd@zhuanzhi.ai, 或扫描上面二维码联系!

请关注专知公众号,获取人工智能的专业知识!


点击“阅读原文”,使用专知

登录查看更多
62

相关内容

包括微软、CMU、Stanford在内的顶级人工智能专家和学者们正在研究更复杂的任务:让机器像人类一样阅读文本,进而根据对该文本的理解来回答问题。这种阅读理解就像是让计算机来做我们高考英语的阅读理解题。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
104+阅读 · 2020年3月12日
【课程推荐】普林斯顿陈丹琦COS 484: 自然语言处理课程
专知会员服务
84+阅读 · 2019年12月11日
斯坦福 | 156页PDF讲解【神经网络阅读理解】
机器学习算法与Python学习
14+阅读 · 2018年12月16日
深度学习之路——论文阅读
专知
11+阅读 · 2018年9月29日
自然语言处理(NLP)前沿进展报告(PPT下载)
Arxiv
6+阅读 · 2019年4月25日
Arxiv
8+阅读 · 2019年3月21日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年12月18日
Arxiv
6+阅读 · 2018年6月18日
Arxiv
5+阅读 · 2017年7月23日
VIP会员
相关论文
Top
微信扫码咨询专知VIP会员