对比复现34个预训练模型,PyTorch和Keras你选谁?

2019 年 3 月 10 日 机器之心

机器之心编辑

参与:思源、张倩


初学者该用什么样的 DL 架构?当然是越简单越好、训练速度越快越好、测试准确率越高越好!那么我们到底该选择 PyTorch 还是 Keras 呢?


Keras 和 PyTorch 当然是对初学者最友好的深度学习框架,它们用起来就像描述架构的简单语言一样,告诉框架哪一层该用什么。这样减少了很多抽象工作,例如设计静态计算图、分别定义各张量的维度与内容等等。


但是,到底哪一个框架更好一点呢?当然不同的开发者和研究者会有不同的爱好,也会有不同的看法。本文主要从抽象程度和性能两个方面对比 PyTorch 与 Keras,并介绍了一个新的基准,它复现并对比了两个框架的所有预训练模型。


在 Keras 和 PyTorch 基准项目中,MIT 在读博士 Curtis G. Northcutt 复现了 34 个预训练模型。该基准结合了 Keras 和 PyTorch,并将它们统一到一个框架内,这样我们就能知道这两个框架的对比结果,知道不同模型用什么框架好。例如,项目作者表示 ResNet 架构的模型使用 PyTorch 要比 Keras 效果好,Inception 架构的模型使用 Keras 又要比 PyTorch 好。


Keras 和 PyTorch 基准项目:https://github.com/cgnorthcutt/benchmarking-keras-pytorch


两大框架的性能与易用性


作为 TensorFlow 的高度封装,Keras 的抽象层次非常高,很多 API 细节都隐藏了起来。虽然 PyTorch 比 TensorFlow 的静态计算图更容易使用,但总体上 Keras 隐藏的细节更多一些。而对于性能,其实各框架都会经过大量的优化,它们的差别并不是很明显,也不会作为主要的选择标准。


易用性


Keras 是一个更高级别的框架,将常用的深度学习层和运算封装进便捷的构造块,并像积木一样搭建复杂模型,开发者和研究者不需要考虑深度学习的复杂度。


PyTorch 提供一个相对较低级别的实验环境,使用户可以更加自由地编写自定义层、查看数值优化任务等等。例如在 PyTorch 1.0 中,编译工具 torch.jit 就包含一种名为 Torch Script 的语言,它是 Python 的子语言,开发者使用它能进一步对模型进行优化。


我们可以通过定义简单的卷积网络看看两者的易用性:


model = Sequential()
model.add(Conv2D(32, (33), activation='relu', input_shape=(32323)))
model.add(MaxPool2D())
model.add(Conv2D(16, (33), activation='relu'))
model.add(MaxPool2D())
model.add(Flatten())
model.add(Dense(10, activation='softmax'))


如上所示为 Keras 的定义方式,很多时候运算都会作为参数嵌入到 API 中,因此代码会显得非常简洁。如下所示为 PyTorch 的定义方式,它一般都是通过类和实例的方式定义,且具体运算的很多维度参数都需要定义。


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(3323)
        self.conv2 = nn.Conv2d(32163)
        self.fc1 = nn.Linear(16 * 6 * 610
        self.pool = nn.MaxPool2d(22)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-116 * 6 * 6)
        x = F.log_softmax(self.fc1(x), dim=-1)

        return x

model = Net()


虽然 Keras 感觉比 PyTorch 更易于使用,但两者的差别不大,都期望模型的编写能更便捷。


性能


目前有很多对比各框架性能的实验都表明 PyTorch 的训练速度相比 Keras 会快一些。如下两张图表展示了不同框架在不同硬件和模型类型的表现:



下面两张同样展示了不同模型在 PyTorch 和 Keras 框架下的性能,这两份 18 年的测试都表明 PyTorch 的速度要比 Keras 快那么一点点。



这两份对比细节可查阅:


  • https://github.com/ilkarman/DeepLearningFrameworks/

  • https://wrosinski.github.io/deep-learning-frameworks/


Keras 和 PyTorch Benchmark


现在如果我们从预训练模型的角度看,那么相同的模型在不同的框架上,验证集准确度又是什么样的?在这个项目中,作者用两个框架一共复现了 34 个预训练模型,并给出了所有预训练模型的验证准确率。所以该项目不仅能作为对比依据,同时还能作为学习资源,又有什么比直接学习经典模型代码更好的方法呢?


预训练模型不是已经可以复现了吗?


在 PyTorch 中是这样的。然而有些 Keras 用户却觉得复现非常难,他们遇见的问题可以分为三类:


1. 不能复现 Keras 已发布的基准结果,即使完全复制示例代码也没有用。实际上,他们报告的准确率(截止到 2019 年 2 月)通常略高于实际准确率。

2. 一些预训练的 Keras 模型在部署到某个服务器或与其他 Keras 模型一起依次运行时会产生不一致或较低的准确率。

3. 使用批归一化(BN)的 Keras 模型可能并不可靠。对于一些模型,前向传播评估仍然会导致推理阶段中的权重改变。


这些问题都是现实存在的,原 GitHub 项目为每个问题都提供了链接。项目作者的目标之一是通过为 Keras 预训练模型创建可复现基准,从而帮助解决上述的一些问题。解决方法可分为以下三个方面,在 Keras 中要做到:


  • 推理期间避免分批(batches)。


每次运行一个样本,这样做非常慢,但可以为每个模型得出一个可复现的输出。

只在本地函数或 with 语句中运行模型,以确保在加载下一个模型时,前一个模型的任何东西都不会保存在内存中。


预训练模型复现结果


以下是 Keras 和 PyTorch 的「实际」验证集准确度表(已经在 macOS 10.11.6、Linux Debian 9 和 Ubuntu 18.04 上得到验证)。



复现方法


首先需要下载 ImageNet 2012 验证集,该数据集包含 50000 张图片。在 ILSVRC2012_img_val.tar 下载完成后,运行以下命令行预处理/提取验证集:


# Credit to Soumith: https://github.com/soumith/imagenet-multiGPU.torch
$ cd ../ && mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
$ wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash


ImageNet 验证集中每个示例的 top 5 预测已经进行了预计,运行以下命令行将直接使用这些预计算结果,并在几秒内复现 Keras 和 PyTorch 基准。


$ git clone https://github.com:cgnorthcutt/imagenet-benchmarking.git
$ cd benchmarking-keras-pytorch
$ python imagenet_benchmarking.py /path/to/imagenet_val_data


不使用预计算数据也可以复现每个 Keras 和 PyTorch 的推理输出。Keras 的推理要花很长时间(5-10 小时),因为每次只计算一个示例的前向传播,还要避免向量计算。如果要可靠地复现同样的准确率,这是目前发现的唯一的方法。PyTorch 的推理非常快(一个小时都不到)。复现代码如下:


$ git clone https://github.com:cgnorthcutt/imagenet-benchmarking.git
$ cd benchmarking-keras-pytorch
# Compute outputs of PyTorch models (1 hour)
$ ./imagenet_pytorch_get_predictions.py /path/to/imagenet_val_data
# Compute outputs of Keras models (5-10 hours)
$ ./imagenet_keras_get_predictions.py /path/to/imagenet_val_data
# View benchmark results
$ ./imagenet_benchmarking.py /path/to/imagenet_val_data


你可以控制 GPU 的使用、批大小、输出存储目录等。运行时加上-h flag,可以查看命令行参数选项。


看完文章之后,你更中意谁呢?



原文链接:http://l7.curtisnorthcutt.com/towards-reproducibility-benchmarking-keras-pytorch



本文为机器之心编辑,转载请联系本公众号获得授权

✄------------------------------------------------

加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com

投稿或寻求报道:content@jiqizhixin.com

广告 & 商务合作:bd@jiqizhixin.com

登录查看更多
1

相关内容

专知会员服务
44+阅读 · 2020年3月6日
《深度学习》圣经花书的数学推导、原理与Python代码实现
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
35+阅读 · 2020年1月10日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
【模型泛化教程】标签平滑与Keras, TensorFlow,和深度学习
专知会员服务
20+阅读 · 2019年12月31日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
164+阅读 · 2019年10月28日
初学者的 Keras:实现卷积神经网络
Python程序员
24+阅读 · 2019年9月8日
开发 | PyTorch好助手:PyTorch Hub一键复现各路模型
一文读懂PyTorch张量基础(附代码)
数据派THU
6+阅读 · 2018年6月12日
手把手教 | 深度学习库PyTorch(附代码)
数据分析
7+阅读 · 2018年3月20日
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
深度学习实战(二)——基于Keras 的深度学习
乐享数据DataScientists
15+阅读 · 2017年7月13日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
5+阅读 · 2019年4月21日
Image Captioning based on Deep Reinforcement Learning
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
相关资讯
初学者的 Keras:实现卷积神经网络
Python程序员
24+阅读 · 2019年9月8日
开发 | PyTorch好助手:PyTorch Hub一键复现各路模型
一文读懂PyTorch张量基础(附代码)
数据派THU
6+阅读 · 2018年6月12日
手把手教 | 深度学习库PyTorch(附代码)
数据分析
7+阅读 · 2018年3月20日
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
深度学习实战(二)——基于Keras 的深度学习
乐享数据DataScientists
15+阅读 · 2017年7月13日
Top
微信扫码咨询专知VIP会员