自然界用了5亿年时间。
才把神经系统从最原始的雏形——阿米巴(Amoeba)变形虫分化出可对外界环境刺激做出响应的内浆,进化到现在的高度复杂的人脑。
如今我们人脑,相对目前阶段的机器来说,可以轻而易举完成各种复杂的任务。
而机器的算法模型要做到同样表现(能力范围还非常局限),必须得靠大量的在AI领域里深耕多年的专家才行。
像认猫、识图、辨别基因突变、或者是诊断疾病这些专项的任务,每一个有效的模型的搭建和调试都必须重度依赖AI专家的经验。
有没有什么方法,可以自行根据外界环境的变化,像阿米巴变形虫那样即时调整出最优的生存策略,不断自我进化获取最优结果的算法呢?
还真的有。
谷歌大脑今日就在研究博客更新,他们已经研究出了一种拥有很强的自我进化能力的神经网络,AmoebaNet。
这个工作的研究基础是2002年Stanley和Miikkulainen的神经进化拓扑学。而其他研究机构,OpenAI,Uber实验室,还有DeepMind他们也有在研究自进化的算法。
谷歌本身有强大的算力优势。所以谷歌大脑团队在琢磨,除了采用强化学习这种方法,怎么样才能能让图像分类器的迭代速度加快。
迭代速度快还不够,出来的效果也必须好,最好还不需要重度依赖专家。毕竟现在问题那么多,AI专家根本不够用。
快、好、省。这就是谷歌大脑要AmoebaNet满足的三个点。
2017年ICML(国际机器学习大会),谷歌大脑发表了一篇论文Large-Scale Evolution of Image Classifiers。这个工作采用了非常简单的神经网络,以及简单的初始设定,让算法自己去进化出网络架构。当时这个算法的效果就已经可以媲美人工手调的模型了。
这项工作出来之后,大家还是挺激动的。因为这意味着越来越多的AI应用可以一定程度上减少模型人工搭建调试的压力。
这下,对没有时间进阶成一个AI专家的用户来说,也能获得一个效果越来越好的模型了。
谷歌大脑思考的下一个问题是,人工手调和自我进化结合的模型,效果会不会比单独的要好?
(人机结合疗效好?)
所以,谷歌大脑最近的一篇论文Regularized Evolution for Image Classifier Architecture Search就开始采用更为复杂些的网络以及优化过的初始设定,还用上了谷歌最新的TPUv2芯片。
这一次,谷歌大脑把最高配的硬件,AI专家的经验,以及自我进化的算法全砌上,就看在CIFAR-10和ImageNet上跑的效果怎么样了。
下图出自谷歌大脑的第一篇论文,每一个点代表用CIFAR-10训练后得到的神经网络。
刚开始,整个神经网络群都没有隐藏层,组成架构都是上千个一样的简单种子模型。
一开始用的种子模型(这一步还没有结合AI专家的经验),每次自我迭代之后,评估神经网络的分类表现。
把表现最好的,也就是分类结果最准确的神经网络挑出来,当作母代模型,用于下一次迭代。
然后在母代模型的基础上,做微调,进化生成更多的子代模型,归进整个神经网络群中(相当于进化生物学里的种群的概念)。
表现不是最好的模型就没有变异进化的机会。
谷歌大脑第一篇论文的工作涉及到的变异都很简单。
比方说,随机移除一个卷积层,或者在随意两层之间加一个连接,或者是改变学习的速率等等。
该工作的结果可以看出来自我进化算法的巨大潜力,虽然搜索空间的质量可能麻麻地(dei)。
举个栗子。
如果把其中一个种子模型改成Inception-ResNet分类器的话,那么可能会得到一个错误的结论:现在这个算法表现还不错,得到一个比较满意的结果了。
但是这样操作的话,我们就把这次的变异操作硬编码了(把这次行为固定下来了,以后不好改),这样的话就变成以最终结果数值为导向,而不是终极效果目标为导向了。
把其他可能性灭掉后,就达不到进化的目的了。
在这个工作里,谷歌大脑把人工操作的部分压缩到最小范围,包含对ReLUs和批标准化层的干预。
在上一次工作之后,谷歌大脑想减少模型进化过程中的试错成本。采用2017年Zoph的类inception模块,有效地把搜索空间缩小,并固定了神经网络的架构,其中网络上节点的模块是可以替换掉的。
最左边的那个图,指的是整个神经网络的外部架构,输入的数据从底部往上处理。
最右边的图,是神经网络节点上的模块内部框架。
整个网络的目标是产出精确性最高的输出结果。
人机结合后模型的变异,是随机重连输出,或者随机替换模块。最后进化出来的模型是高质量的。
从图可以看出,在训练的早期,自我进化的模型用最少的算力就获得了最好的效果。
另外,自我进化模型很重要的一个特征是,最旧的、很久没获得变异机会的模型会被弃掉。这样整个神经网络群的进化速度会越来越快。更多细节可以参考论文。
最后,附阿米巴网络AmoebaNet论文地址:
https://arxiv.org/abs/1802.01548
& 编译来源:
https://research.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html
你可能感兴趣
破解AI大脑黑盒迈出新一步!谷歌现在更懂机器,还开源了研究工具
— 完 —
加入社群
量子位AI社群15群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot6入群;
此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。
进群请加小助手微信号qbitbot6,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI · 头条号签约作者
վ'ᴗ' ի 追踪AI技术和产品新动态