npj: 有机光电子学—深度学习帮你设计出高效分子

2018 年 12 月 17 日 知社学术圈

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

高性能功能材料的发现对于克服现代工业中的技术问题至关重要。从实验和材料设计的角度看,人们对加速和促进材料发现过程作了广泛而大量的努力。机器学习辅助材料发现被广泛关注,是因其能为材料的有效探索提供合理指导,既能避免耗时的迭代又无需前人的知识积累。但如何实现完全数据驱动的机器学习和新材料发现,尚需探索。

来自韩国三星和成均馆大学的KyungdocKim及其同事,梦想着想要有什么属性的材料,只要告诉计算机,计算机就能帮他设计出所需的材料分子。为此,他们基于深度编码器-解码器架构的逆设计模型,由神经机器语言翻译的启发,开发了两种计算机算法,用于目标分子设计,两种计算方法能为同一设计目的而共同工作。第一种算法是深度神经网络编码器,能查看已知有机分子及其属性的数据库,提取分子结构与其材料性能之间的隐藏特征,找到描述结构/性能关系的抽象规则;第二种算法为递归神经网络解码器,能将提取的特征重建为具有目标性质的新分子结构。他们用其所构建的完全数据驱动方法,成功地从给定的数据库中学习了设计规则,并通过创建新的配体和组合规则,设计了能够吸收所需波长的分子,有希望实现高效、稳定的蓝光有机显示器材料。该技术可用于发现应用范围更广的相关全新分子和设计规则。


该文近期发表于npj Computational Materials 4: 67 (2018),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。



Deep-learning-based inverse design model for intelligent discovery of organic molecules 


Kyungdoc Kim, Seokho Kang, Jiho Yoo, Youngchun Kwon, Youngmin Nam, Dongseon Lee, Inkoo Kim, Youn-Suk Choi, Yongsik Jung, Sangmo Kim, Won-Joon Son, Jhunmo Son, Hyo Sug Lee, Sunghan Kim, Jaikwang Shin & Sungwoo Hwang 


The discovery of high-performance functional materials is crucial for overcoming technical issues in modern industries. Extensive efforts have been devoted toward accelerating and facilitating this process, not only experimentally but also from the viewpoint of materials design. Recently, machine learning has attracted considerable attention, as it can provide rational guidelines for efficient material exploration without time-consuming iterations or prior human knowledge. In this regard, here we develop an inverse design model based on a deep encoder-decoder architecture for targeted molecular design. Inspired by neural machine language translation, the deep neural network encoder extracts hidden features between molecular structures and their material properties, while the recurrent neural network decoder reconstructs the extracted features into new molecular structures having the target properties. In material design tasks, the proposed fully data-driven methodology successfully learned design rules from the given databases and generated promising light-absorbing molecules and host materials for a phosphorescent organic light-emitting diode by creating new ligands and combinatorial rules.



扩展阅读

 

npj: 单层磁性—原来是Kitaev相互作用搞的鬼!

npj: 预转变材料中的缺陷—纳米胚胎增强材料性能

npj: 零点能对位错运动的影响

npj: 2D碳基Dirac材料的设计

npj: 润滑机理—无定形碳/α烯烃界面

本文系网易新闻·网易号“各有态度”特色内容

媒体转载联系授权请看下方

登录查看更多
0

相关内容

【CVPR2020-CMU】无数据模型选择,一种深度框架潜力
专知会员服务
23+阅读 · 2020年4月12日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
57+阅读 · 2020年4月8日
生物数据挖掘中的深度学习,诺丁汉特伦特大学
专知会员服务
68+阅读 · 2020年3月5日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
Acta Mater. 基于机器学习设计出新型超高强不锈钢
材料科学与工程
5+阅读 · 2019年9月2日
面向人工智能的计算机体系结构
计算机研究与发展
14+阅读 · 2019年6月6日
npj: 机器学习添视觉—材料缺陷快分析
知社学术圈
6+阅读 · 2018年8月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【深度学习】深度学习与神经科学相遇
产业智能官
9+阅读 · 2017年12月17日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关资讯
Acta Mater. 基于机器学习设计出新型超高强不锈钢
材料科学与工程
5+阅读 · 2019年9月2日
面向人工智能的计算机体系结构
计算机研究与发展
14+阅读 · 2019年6月6日
npj: 机器学习添视觉—材料缺陷快分析
知社学术圈
6+阅读 · 2018年8月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【深度学习】深度学习与神经科学相遇
产业智能官
9+阅读 · 2017年12月17日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员