极市导读
深度学习在训练过程中,由于随机初始化,样本读取的随机性,导致重复的实验结果会有差别,个别情况甚至波动较大。一般论文为了严谨,实验结论能够复现/可重复,通常采取固定随机种子使得结果确定。本文总结了一些去定型设置的方法,附详细代码。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
随机函数是最大的不确定性来源,包含了模型参数的随机初始化,样本的shuffle。
# PyTorch
import torch
torch.manual_seed(0)
# python
import random
random.seed(0)
# Third part libraries
import numpy as np
np.random.seed(0)
CPU版本下,上述随机种子设置完成之后,基本就可实现实验的可复现了。
对于GPU版本,存在大量算法实现为不确定结果的算法,这种算法实现效率很高,但是每次返回的值会不完全一样。主要是由于浮点精度舍弃,不同浮点数以不同顺序相加,值可能会有很小的差异(小数点最末位)。
GPU算法的不确定来源有两个
CUDA convolution benchmarking 是为了提升运行效率,对模型参数试运行后,选取最优实现。不同硬件以及benchmarking本身存在噪音,导致不确定性
nondeterministic algorithms:GPU最大优势就是并行计算,如果能够忽略顺序,就避免了同步要求,能够大大提升运行效率,所以很多算法都有非确定性结果的算法实现。通过设置use_deterministic_algorithms,就可以使得pytorch选择确定性算法。
# 不需要benchmarking
torch.backends.cudnn.benchmark=False
# 选择确定性算法
torch.use_deterministic_algorithms()
对于一个PyTorch 的函数接口,没有确定性算法实现,只有非确定性算法实现,同时设置了use_deterministic_algorithms(),那么会导致运行时错误。比如:
>>> import torch
>>> torch.use_deterministic_algorithms(True)
>>> torch.randn(2, 2).cuda().index_add_(0, torch.tensor([0, 1]), torch.randn(2, 2))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: index_add_cuda_ does not have a deterministic implementation, but you set
'torch.use_deterministic_algorithms(True)'. ...
错误原因:
index_add没有确定性的实现,出现这种错误,一般都是因为调用了torch.index_select 这个api接口,或者直接调用tensor.index_add_。
解决方案:
自己定义一个确定性的实现,替换调用的接口。对于torch.index_select 这个接口,可以有如下的实现。
def deterministic_index_select(input_tensor, dim, indices):
"""
input_tensor: Tensor
dim: dim
indices: 1D tensor
"""
tensor_transpose = torch.transpose(x, 0, dim)
return tensor_transpose[indices].transpose(dim, 0)
# 设置每个读取线程的随机种子
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
numpy.random.seed(worker_seed)
random.seed(worker_seed)
g = torch.Generator()
# 设置样本shuffle随机种子,作为DataLoader的参数
g.manual_seed(0)
DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=num_workers,
worker_init_fn=seed_worker,
generator=g,
)
参考文献
Reproducibility - PyTorch 1.10.1 documentation
torch.index_select - PyTorch 1.10.1 documentation
公众号后台回复“速查表”获取
21张速查表(神经网络、线性代数、可视化等)打包下载~
算法竞赛:算法offer直通车、50万总奖池!高通人工智能创新应用大赛等你来战!
技术干货:超简单正则表达式入门教程|22 款神经网络设计和可视化的工具大汇总
极视角动态:芜湖市湾沚区联手极视角打造核酸检测便民服务系统上线!|青岛市委常委、组织部部长于玉一行莅临极视角调研
“
点击阅读原文进入CV社区
收获更多技术干货