分布式系统非常关注三个指标:
数据一致性
系统可用性
节点连通性与扩展性
关于一致性
数据“强一致性”,是希望系统只读到最新写入的数据,例如:通过单点串行化的方式,就能够达到这个效果。
关于session一致性,DB主从一致性,DB双主一致性,DB与Cache一致性,数据冗余一致性,消息时序一致性,分布式事务一致性,库存扣减一致性,详见文章《究竟啥才是互联网架构“一致性”》。
关于可用性
如果系统每运行100个时间单位,会有1个时间单位无法提供服务,则说系统的可用性是99%。
可用性和可靠性是比较容易搞混的两个指标,以一台取款机为例:
正确的输入,能够取到正确的钱,表示系统可靠
取款机7*24小时提供服务,表示系统可用
保证系统高可用的方法是:
冗余
故障自动转移
反向代理层,站点层,服务层,缓存层,数据库层各层保证系统高可用的方法,详见文章《究竟啥才是互联网架构“高可用”》。
关于连通性与扩展性
分布式系统,往往有多个节点,每个节点之间,都不是完全独立的,需要相互通信,当发生节点无法联通时,数据是否还能保持一致,系统要如何进行容错处理,是需要考虑的。
同时,连通性和扩展性紧密相关,想要加机器扩展性能,必须有良好的连通性。当一个节点脱离系统,系统就出现问题,往往意味着系统是无法扩展的。
反向代理层,站点层,服务层,缓存层,数据库层各层保证系统扩展性的方法,详见文章《究竟啥才是互联网架构“可扩展”》。
什么是CAP定理?
CAP定理,是对上述分布式系统的三个特性,进行了归纳:
一致性(Consistency)
可用性(Availability)
分区容忍性(Partition Tolerance)
并且,定理指出,在系统实现时,这三者最多兼顾两点。
一致性,可用性,多节点扩展性三者只能取其二,既然加锁已经加上,常见的最佳工程架构实践是什么呢?
互联网,最常见的实践是这样的:
节点连通性,多节点扩展性,连通性异常的处理必须保证,满足P
一致性C与可用性A一般二选一
选择一致性C,举例:传统单库水平切分,就是这类选型的典型
选择可用性A,举例:双主库同步高可用,就是这类选型的典型
强一致很难怎么办?
单点串行化,虽然能保证“强一致”,但对系统的并发性能,以及高可用有较大影响,互联网的玩法,更多的是“最终一致性”,短期内未必读到最新的数据,但在一个可接受的时间窗口之后,能够读到最新的数据。
例如:数据库主从同步,从库上的数据,就是一个最终的一致。
总结
CAP可以理解为一致性,可用性,联通与扩展性
CAP三者只能取其二
最常见的实践是AP+最终一致性
思路比结论重要。
架构师之路-分享可落地的技术文章
推荐阅读: