计算机视觉研究院专栏
作者:Edison_G
OneFlow 是什么?
OneFlow是开源的、采用全新架构设计,世界领先的工业级通用深度学习框架。
目录
1、背景
2、网络模型训练的逻辑图 3、Consistent 视角下的并行特色 4、选择最优的并行方式 5、混合并行实例 6、 流水并行实例
在Consistent 与 Mirrored 视角中,我们已经知道 OneFlow 提供了 mirrored 与 consistent 两种看待分布式系统的视角,并且提前了解了 OneFlow 的 consistent 视角颇具特色。
因为在 consistent_view 下,OneFlow 提供了逻辑上统一的视角,分布式训练时,用户可以自由选择数据并行、模型并行还是是混合并行。
在本文中,继续深入介绍 OneFlow 独具特色的 consistent 视角,包括:
我们先设定一个简单的多层网络,作为我们我们讨论并行方式的载体,其结构如下图所示:
各层中,有 样本 (灰色矩形)、 模型 (蓝色矩形),以及作用在两者之上的 op (圆形),为了简化讨论,我们也可将样本与模型限定为 矩阵 ,作用在它们之上的op为 矩阵乘法 。
对照上图,我们很容易梳理出该网络模型的逻辑:
consistent 视角下支持数据并行、模型并行与混合并行,我们将依次进行介绍,其中混合并行是重点。
我们已经知道,consistent 视角下,默认的并行方式是数据并行;而如果选择 mirrored 视角,则只能采用数据并行;若在调用作业函数时直接传递 numpy 数据(而不是使用 OneFlow 的 flow.data.xxx_reader 接口进行数据加载),两者的区别在于:
下图是 consistent 视角下,采用纯数据并行的方式,实现原逻辑网络模型的流程示意图:
在纯数据并行中,采用了2张显卡进行并行训练,因为采用了 纯数据并行 ,可以看到,对于原逻辑模型中的每一层,样本数据都被平均分配到了各个卡上,每张卡上都拥有 完整的模型,与切分的数据进行 op 运算,最后组合各个卡上的样本,得到完整的输出。
在 consistent 视角下,也可以通过选择纯模型并行(设置方式在下文实例中会介绍),其流程示意图为:
在纯模型并行中,同样是2张显卡进行并行训练,原逻辑模型中的每一层中,都是 部分模型 与 完整的数据 进行 op 运算,最后组合得到完整的输出。
值得一提的是,从上图可以看出,各个卡上第0层的输出,并 不能 直接作为第1层的输入:因为模型并行中,为完成 op 操作,需要部分的模型与 完整的 数据;为了解决这个问题,OneFlow 中使用了 boxing 机制。
boxing 机制会统筹分布式训练中各个节点的数据,并合理切分、合并到对应的卡上,除了模型并行过程中的数据重组问题外,数据并行中的反向梯度同步,也使用 boxing 机制解决。
boxing 的内部机制虽然复杂,但是对于用户而言是透明的,我们仅仅是防止读者产生迷惑才加入了 boxing 的图示,对于本文而言,我们只需要了解:OneFlow 会自动协调好分布式中数据的同步问题。
数据并行与模型并行的优劣并不是一成不变的,样本规模、模型规模及模型结构决定了分布式训练中的综合表现,需要具体情况具体分析。
概括而言:
实际上,也可以使用 混合并行,在同一个分布式训练的不同部分,组合使用数据并行、模型并行。比如,对于神经网络中靠前的参数较少、计算量大的层,采用数据并行;在最终的参数众多的全连接层,则采用模型并行,以下是针对本文最开始的网络模型逻辑图的 混合并行 实现方案的示意图:
目前,其它的主流框架对于混合并行或者不支持,或者需要深度定制,而OneFlow 中可以通过简单的设置,配置混合并行的分布式训练,还可以用自由度超高的“网络接力”的并行模式,深度优化分布式系统。
以下,在 consistent 视角下,我们对 MLP 模型采用了混合并行方案:输入层与隐藏层采用(默认的)数据并行;输出层采用模型并行并进行列切分。
完整代码:mixed_parallel_mlp.py
# mixed_parallel_mlp.py
import oneflow as flow
import oneflow.typing as tp
BATCH_SIZE = 100
def mlp(data):
initializer = flow.truncated_normal(0.1)
reshape = flow.reshape(data, [data.shape[0], -1])
hidden = flow.layers.dense(
reshape,
512,
activation=flow.nn.relu,
kernel_initializer=initializer,
name="dense1",
)
return flow.layers.dense(
hidden,
10,
kernel_initializer=initializer,
# dense涓哄垪瀛樺偍锛岃繘琛宻plit(0)鍒囧垎
model_distribute=flow.distribute.split(axis=0),
name="dense2",
)
def get_train_config():
config = flow.function_config()
config.default_data_type(flow.float)
return config
def train_job(
images: tp.Numpy.Placeholder((BATCH_SIZE, 1, 28, 28), dtype=flow.float),
labels: tp.Numpy.Placeholder((BATCH_SIZE,), dtype=flow.int32),
) -> tp.Numpy:
logits = mlp(images)
loss = flow.nn.sparse_softmax_cross_entropy_with_logits(
labels, logits, name="softmax_loss"
)
lr_scheduler = flow.optimizer.PiecewiseConstantScheduler([], [0.1])
flow.optimizer.SGD(lr_scheduler, momentum=0).minimize(loss)
return loss
if __name__ == "__main__":
flow.config.gpu_device_num(2)
check_point = flow.train.CheckPoint()
check_point.init()
(train_images, train_labels), (test_images, test_labels) = flow.data.load_mnist(
BATCH_SIZE
)
for epoch in range(3):
for i, (images, labels) in enumerate(zip(train_images, train_labels)):
loss = train_job(images, labels)
if i % 20 == 0:
print(loss.mean())
以上代码修改自3分钟快速上手中的示例代码,比较两份代码,也可以体会到在 OneFlow 的 consistent_view 下进行各种并行方案的配置是多么的简单,只需要在单机的程序上稍加修改即可。
以上程序的关键部分有:
flow.config.gpu_device_num(2)
def mlp(data):
initializer = flow.truncated_normal(0.1)
reshape = flow.reshape(data, [data.shape[0], -1])
hidden = flow.layers.dense(
reshape,
512,
activation=flow.nn.relu,
kernel_initializer=initializer,
name="dense1",
)
return flow.layers.dense(
hidden,
10,
kernel_initializer=initializer,
# dense为列存储,进行split(0)切分
model_distribute=flow.distribute.split(axis=0),
name="dense2",
)
有读者可能好奇为什么split(axis=0)是列切分?需要说明的是,OneFlow 中的 dense 内部采用列存储,因此以上代码的flow.distribute.split(axis=0)确实是在做列切分。
此外,flow.layers.dense 使用 model_distribute 形参设置并行方式,其内部调用了底层更通用的 get_variable 接口创建 blob, get_variable 接口设置并行方式的形参名为 distribute。
可以看到,我们通过极少量的修改,就能将单机训练程序改为分布式、混合并行的程序,这是 OneFlow 区别于其它框架的一大特色。
在模型并行之外,OneFlow 还提供了一种灵活度更高的“流水并行”的并行方式,可以让用户使用 scope.placement 接口显式指定用来运行逻辑 op的 物理硬件。
在流水并行中,整个神经网络有的层次在一组物理设备上,另外一些层次在另外一组物理设备上,它们以接力的方式协同工作,分多个阶段,在设备之间流水执行。
在以下示例中,我们对Consistent 与 Mirrored 视角中的"在 OneFlow 中使用 consistent 视角"代码进行简单修改,展示了流水并行模式。
完整代码:mixed_parallel_lenet.py
# mixed_parallel_lenet.py
import oneflow as flow
import oneflow.typing as tp
BATCH_SIZE = 100
def lenet(data, train=False):
initializer = flow.truncated_normal(0.1)
conv1 = flow.layers.conv2d(
data,
32,
5,
padding="SAME",
activation=flow.nn.relu,
kernel_initializer=initializer,
name="conv1",
)
pool1 = flow.nn.max_pool2d(conv1, ksize=2, strides=2, padding="SAME", name="pool1")
conv2 = flow.layers.conv2d(
pool1,
64,
5,
padding="SAME",
activation=flow.nn.relu,
kernel_initializer=initializer,
name="conv2",
)
pool2 = flow.nn.max_pool2d(conv2, ksize=2, strides=2, padding="SAME", name="pool2")
reshape = flow.reshape(pool2, [pool2.shape[0], -1])
with flow.scope.placement("gpu", "0:0"):
hidden = flow.layers.dense(
reshape,
512,
activation=flow.nn.relu,
kernel_initializer=initializer,
name="hidden",
)
if train:
hidden = flow.nn.dropout(hidden, rate=0.5)
with flow.scope.placement("gpu", "0:1"):
output = flow.layers.dense(
hidden, 10, kernel_initializer=initializer, name="outlayer"
)
return output
def get_train_config():
config = flow.function_config()
config.default_data_type(flow.float)
return config
def train_job(
images: tp.Numpy.Placeholder((BATCH_SIZE, 1, 28, 28), dtype=flow.float),
labels: tp.Numpy.Placeholder((BATCH_SIZE,), dtype=flow.int32),
) -> tp.Numpy:
logits = lenet(images, train=True)
loss = flow.nn.sparse_softmax_cross_entropy_with_logits(
labels, logits, name="softmax_loss"
)
lr_scheduler = flow.optimizer.PiecewiseConstantScheduler([], [0.1])
flow.optimizer.SGD(lr_scheduler, momentum=0).minimize(loss)
return loss
if __name__ == "__main__":
flow.config.gpu_device_num(2)
check_point = flow.train.CheckPoint()
check_point.init()
(train_images, train_labels), (test_images, test_labels) = flow.data.load_mnist(
BATCH_SIZE
)
for epoch in range(50):
for i, (images, labels) in enumerate(zip(train_images, train_labels)):
loss = train_job(images, labels)
if i % 20 == 0:
print(loss.mean())
以上关键的代码只有2行,且他们的本质作用是类似的:
通过 oneflow.scope.placement ,指定 hidden 层的 op 计算运行在0号 GPU 上:
with flow.scope.placement("gpu", "0:0"):
hidden = flow.layers.dense(
reshape,
512,
activation=flow.nn.relu,
kernel_initializer=initializer,
name="hidden",
)
with flow.scope.placement("gpu", "0:1"):
output = flow.layers.dense(
hidden, 10, kernel_initializer=initializer, name="outlayer"
)
其中 scope.placement 的第一个参数指定 cpu 还是 gpu,第二个参数指定机器及运算设备编号,如,“使用第1号机器的第2个 GPU”,则应该写:
with flow.scope.placement("gpu", "1:2"):
# ...
流水并行,使得用户可以为每个 op 指定物理设备,非常适合对网络模型及分布式情况都很熟悉的用户进行深度优化 。
此外,OneFlow 提供的 API oneflow.unpack、oneflow.pack 等,结合了 OneFlow 自身任务调度的特点,使得流水并行更易用、高效。
我们开创一段时间的“计算机视觉协会”知识星球,也得到很多同学的认可,我们定时会推送实践型内容与大家分享,在星球里的同学可以随时提问,随时提需求,我们都会及时给予回复及给出对应的答复。
扫码关注我们
公众号 : 计算机视觉研究院
扫码回复“OneFlow”获取源代码