记者:魏子敏
我该何时、怎么样建设自己的数据团队?
数据团队的价值如何衡量?
拥有十几年丰富的数据实战经验,并在实践中形成了独特的数据化思考及管理方式,对大数据未来趋势有独到见解;亲自领导阿里数据团队在大数据实践领域取得了一系列重要成果,包括为阿里建立集团各事业群的业务及决策分析框架,开发智能化的数据产品,成立了驱动集团数据化的运营团队,成功发起了公共与专有数据资产管理体系,还发布了数据安全规范等。2017年被国家信息中心选为中国十大最具影响力大数据企业家。代表作品《决战大数据》、《数据的本质》。
可以上下滑动哟~
以下是采访的内容
大数据文摘: 什么样的数据团队才称得上顶级?
一般人听到顶级一般会想,团队里有一个非常厉害的科学家,但是我定义的顶级是整个团队的配合天衣无缝,像一个篮球队。
车品觉: 我想答案应该是,哪边有这样的人,我们就去培养。
因为这种人非常少,再加上如果讲顶级大数据团队,在数据上继续构建,还要多一个东西,还有其他领域的数据在自己领域的增值是什么?(其他场景的数据进到我的主场景的时候会产生什么价值),这是个跨界的东西。需要一个人指挥这个团队的前进方向。
因此,要建设一个顶级数据团队,你要知道怎么盘点这个数据团队,盘点一个团队肯定分两种:为了业务盘点技术,还是为了技术盘点业务,这两种有什么不一样,这是很多公司不具备的,我觉得这才是宝贵的。我在阿里这么多年,这是我最引以为傲的,至于培养了多少人,这不是重要的。
车品觉: 我更看好这两者混合的数据团队,就好像打架,肯定有前锋,但是前锋和后方部队的工作不一样。你可以培养很懂数据的团队来产生价值,但是谁来培养培养数据呢?数据不是资产,是资源。要时刻问自己,你的资源够不够?如果现在够,还需要问一下,公司准备在两三年后做的事情,资源又够不够?
所以数据战略应该和业务战略是同步的,业务战略走多高,数据战略也应该走多高。而数据战略又分为数据能力的战略和数据资源的战略,我们现在很多人都提到一个问题,数据的发展会成为很多东西的壁垒。数据要越来越像一个战略,算法是技术,是一个效率问题,产品和业务场景是变现,我觉得这三个点要分开来讲。
如果把这一点逐步平台化,这个问题会改善。我们有一次在阿里,打开了整个云,看数据的重复,发现非常多,每个人都在建自己的底层。从管理者的角度来说,怎么解决?把用得多的数据变成公共层,没有人可以copy出去。
车品觉: 数据驱动的定义是,我在做一个决策的时候是不是数据支持的。
如果给你看一份报告,让你对这个事情有了一定的认知,接下来做了一个正确的决定,算不算数据驱动?
在一个保险计算中,有没有风险工具在其中,直接把大数据算法能力放在风控领域中,算不算数据驱动?
当然这三个都是数据驱动,但是一个比一个有更紧密的数据回流,而且改进的时间是一个比一个更短。首先公司要明白,刚刚说的三种数据驱动在一家公司会同时存在,它是基于管理层还是中层还是直接应用。管理层的问题是不可能完全数据化的,几乎没有数据,需要基于判断,基于不完美数据的判断,第二个闭环情况下,是可以在部分环节套进去,第三个是可以自适应的。
车品觉: 人才缺乏。
在一个行业正走红的时候,找人很难找,即使是阿里,也很难得心应手找到合适的人。刚刚讲的东西也就更关键了,依靠团队,而不是依靠某一个人,在大家都没有人的时候,我刚刚进阿里的时候就是这样,一定要打配合,我常常跟我的团队说,我们不是单人作战的,我们是一起打的。
车品觉: 最好在培养的时候能培养多一点domain的人才,其实AI和大数据都有两类:基础AI/大数据和应用AI/大数据,应用是跟行业联系起来的,这两种人才的培养是不一样的,在应用端的培养,应该在大学时候给予多一些行业知识。我在念书时候,有business computing,懂商业。当然我们也不仅要培养应用类AI/大数据,也要培养基础的。
☟查看《顶级数据团队建设报告》系列专访内容
数据还在“周更”的快消巨人雀巢,将全球供应链预测误差降低了50%
车好多CTO张小沛:从高管到一线,如何营造全公司一致的数据价值观
对话吴甘沙:强技术驱动公司如何建设数据团队?你得先抢来一位技术大牛
揭秘LinkedIn总部数据科学战队:技术强者常有,顶级团队胜在软实力
对话第四范式胡时伟:让数据科学家成为业务专家,再为他们配一支技术军团
【今日机器学习概念】
Have a Great Definition