接收会议:ICDE2021 (International Conference on Data Engineering)
论文链接:https://arxiv.org/abs/2104.14899
欢迎转载,转载请注明出处
在电子商务平台中,会话推荐系统(Conversational Recommender Systems, CRSs)通常用于改善用户购物体验。很多网店都有客服聊天机器人,能够通过多轮会话交互来识别用户的意图,然后向他们推荐符合其需求的商品。
传统的点击率预测模型通常用于对候选项进行排序,但大多数会话推荐系统仍然需要解决样本较少和数据稀疏的问题。这篇文章提出了知识增强的深度交叉网络(Knowledge-enhanced Deep Cross Network, K-DCN),能够通过预训练和微调两个步骤,构建会话推荐系统预测模型并推荐合适的商品。该模型引入了基于预训练会话知识图谱的用户状态和对话交互表示,使会话推荐系统预测模型能够感知用户的当前状态以及对话和项目之间的关系,并通过深度交叉网络融合多种信息提供推荐商品。该模型在阿里巴巴真实业务场景中得到了验证。