Agentic AI(智能体化人工智能)代表了人工智能领域的一场变革性转向。然而,由于其发展速度迅猛,当前学界对其概念的理解仍相对碎片化,常常将现代神经系统与过时的符号模型混为一谈——这一现象被称为“概念性回溯(conceptual retrofitting)”。本综述旨在打破这一混乱,通过提出一个全新的“双范式框架”,将智能体系统划分为两条截然不同的谱系:符号/经典范式(依赖算法规划与持久状态)与神经/生成式范式(依赖随机生成与提示驱动的编排)。
基于对 2018–2025 年间 90 篇研究的 PRISMA 系统综述方法,我们围绕该框架从三个维度展开全面分析: (1) 各范式的理论基础与架构原则; (2) 在医疗、金融与机器人等领域的具体实现,展示应用约束如何决定范式选择; (3) 不同范式特有的伦理与治理挑战,揭示风险模式与缓解策略的差异性。
我们的分析表明,范式选择具有战略性:符号系统在安全关键领域(如医疗)中占据主导,而神经系统则更适用于数据丰富、需要高度适应性的场景(如金融)。此外,我们识别出关键研究缺口,包括:符号系统在治理模型上的显著不足,以及构建混合神经–符号架构的迫切需求。
最终,本研究提出了一条战略路线图,指出智能体化 AI 的未来不在于某一范式的单独取胜,而在于两者的有机融合,以构建既具适应性又具可靠性的系统。此项工作为未来在智能体系统的研究、开发与政策制定方面提供了必备的概念工具包,以推动稳健且可信赖的混合智能系统的发展。
**关键词:**智能体化 AI · 人工智能 · 系统性综述 · 神经架构 · 符号 AI · 多智能体系统 · AI 治理 · 神经–符号 AI
人工智能(AI)领域正经历一场范式转移:从构建被动的、任务特定的工具,转向工程化能够展现真正“能动性(agency)”的自主系统。现代智能体化 AI 系统(Wissuchek and Zschech 2025;Viswanathan et al. 2025)具备主动规划、上下文记忆、复杂工具使用,以及基于环境反馈自适应行为等能力。这类系统不再只是问题求解器,而是协作伙伴,能够动态感知复杂环境、推理抽象目标,并自主编排一系列行动——无论是独立运行还是作为复杂多智能体生态系统的一部分(Xie et al. 2024;Du et al. 2025)。 为了建立清晰且精确的概念基础,我们首先区分该领域的核心概念。AI 智能体(或单智能体系统)指为完成某项目标而设计的自包含自治系统。它主要以独立方式运行,虽然可能与工具或 API 交互,但其能动性体现为自治性、主动性,以及能够独立完成任务的能力。 例如,一个基于大型语言模型(LLM)的单智能体若被赋予任务“为一个新的移动应用撰写完整的项目提案”,它将会自主拆解任务、开展研究、撰写各部分内容,并完成最终文档的格式化。 相比之下,智能体化 AI(Agentic AI)是一个更广泛的领域与架构范式,旨在构建能够展现能动性的系统。关键在于,它通常涉及多智能体系统(MAS)的编排,其中多个专门化智能体协同工作,通过协调与通信来解决单一智能体无法胜任的复杂问题。 例如,一个用于执行相同任务的智能体化 AI 系统将部署一组专业智能体:由项目管理智能体负责将任务拆分为子目标,研究智能体收集市场数据,写作智能体撰写内容,而质量保障智能体对结果进行审查。他们之间的协作流程正是智能体化 AI 的典型体现。 总结而言,可以将 AI 智能体视为一个功能强大的“单个工作者”,而智能体化 AI则代表一种利用能动性的原则,通常通过设计并管理整支智能体团队来实现。 然而,这一快速演进也带来了概念上的碎片化与时代错置。先前研究指出的关键问题是概念性回溯(conceptual retrofitting)——即错误地使用经典符号框架(如 BDI 模型(Archibald et al. 2024)或 PPAR 感知–规划–行动–反思循环(Zeng et al. 2024;Erdogan et al. 2025))来描述基于大型语言模型(LLM)的现代系统(Plaat et al. 2025),而这些系统在根本上依赖随机生成与提示驱动的编排。这类做法模糊了 LLM 智能体的真实操作机制(Gabison and Xian 2025;Wang et al. 2024;Zhao et al. 2023;Chen et al. 2024),并人为制造了不同架构范式之间的虚假连续性。
已有多篇综述对智能体化 AI 的部分方面进行了探讨,但大多数研究要么范围有限,要么聚焦于单一技术层面、应用领域或高层概念,未能呈现该领域的全貌,也未有效回应概念性回溯的核心挑战。表 1 对这些综述的关注点、贡献与局限性进行了总结。 为解决这些问题,本文首先建立清晰的历史语境(如图 1 所示),展示 AI 的演化历程可分为五个彼此重叠但相对独立的时代:
该时代奠定了 AI 的最初愿景,以逻辑与显式知识为基础。MYCIN、DENDRAL 等专家系统(Swartout 1985)依赖手工构建的符号规则,体现了一种自上而下、演绎式的“纯符号范式”。
这一转变阶段摆脱了完全硬编码的逻辑,转向从数据中学习。尽管仍高度依赖人工设计特征,但统计学习模型(如 SVM、决策树)推动了分类、推荐等应用发展,为后续深度学习奠定基础。
深度神经网络的普及使得系统能够自动学习层级表征,这一时代革新了视觉、语音与文本的感知能力。然而,这些模型仍主要作为强大的模式识别器,而非自治智能体。
GAN 的突破与 Transformer 架构(2017)推动了 LLM(如 GPT、BERT)的快速发展,使 AI 从感知迈向生成,能够合成连贯的文本、代码与媒体,为现代智能体化 AI 提供了核心底座——通用、强大的统计推理引擎。
这一前沿阶段聚焦于利用 LLM 的生成能力实现行动与自治。此时代的典型系统包括 AutoGPT 等能够通过规划与工具使用来追求目标的智能体(Durante et al. 2024;Masterman et al. 2024;Piccialli et al. 2025),以及向多智能体系统演化的高级框架,如 CrewAI 与 AutoGen(Acharya et al. 2025;Viswanathan 2025;Plaat et al. 2025;Schneider 2025;Hosseini and Seilani 2025)。与符号范式中的算法推理不同,这一阶段的能动性源自生成式模型的随机编排机制。
这一历史脉络揭示了一个关键事实:智能体化 AI 并非符号 AI 的线性延伸,而是建立在完全不同的神经架构基础之上。为此,我们提出一个全新的概念框架(图 2),以明确区分智能体化 AI 的符号谱系与神经谱系,从而避免概念性错置,并提供统一的理论视角。
提出全新的双范式分类法
引入并应用一个新的分析框架(图 2),明确区分符号与神经谱系,避免概念性回溯并实现精准分类。 1. 架构澄清
阐明现代神经框架的运行原理,如提示链式推理与对话编排机制,而非符号式规划。 1. 实证映射
基于 PRISMA 方法系统性调研 90 篇文献,并使用双范式框架对其进行分类,分析研究趋势并基于正确标准评估其架构。 1. 治理锚定
将伦理、责任与对齐挑战嵌入到各范式的技术背景中,确保在正确的技术语境下讨论安全问题。
本文的结构如下:第 2 节提出理论框架与双范式分类法;第 3 节详述系统性方法;第 4 节基于范式分析呈现文献研究结果;第 5 节讨论启示、局限与未来方向;第 6 节总结主要贡献。