【导读】本文章从深度神经网络(DNN)入手,对深度学习(DL)领域的研究进展进行了简要的综述。内容包括:卷积神经网络(CNN)、循环神经网络(RNN)、长时记忆(LSTM)和门控递归单元(GRU)、自动编码器(AE)、深度信念网络(DBN)、生成对抗性网络(GAN)和深度强化学习(DRL)。

近年来,深度学习在各个应用领域都取得了巨大的成功。这个机器学习的新领域发展迅速,已经应用于大多数传统的应用领域,以及一些提供更多机会的新领域。针对不同类型的学习,提出了不同的学习方法,包括监督学习、半监督学习和非监督学习。

实验结果表明,与传统机器学习方法相比,深度学习在图像处理、计算机视觉、语音识别、机器翻译、艺术、医学成像、医学信息处理、机器人与控制、生物信息学、自然语言处理、网络安全等领域具有最先进的性能。

本研究从深度神经网络(DNN)入手,对深度学习(DL)领域的研究进展进行了简要的综述。研究内容包括:卷积神经网络(CNN)、循环神经网络(RNN)、长时记忆(LSTM)和门控递归单元(GRU)、自动编码器(AE)、深度信念网络(DBN)、生成对抗性网络(GAN)和深度强化学习(DRL)。

此外,我们还讨论了最近的发展,例如基于这些DL方法的高级变体DL技术。这项工作考虑了2012年以后发表的大部分论文,当时深度学习的历史开始了。此外,本文中还包括了在不同应用领域探索和评价的DL方法。我们还包括最近开发的框架、SDKs和基准数据集,用于实施和评估深度学习方法。目前有一些研究已经发表,例如使用神经网络和一个关于强化学习(RL)的综述。然而,这些论文还没有讨论大规模深度学习模型的个别高级训练技术和最近发展起来的生成模型的方法。

关键词:卷积神经网络(CNN);循环神经网络(RNN);自动编码器(AE);受限Boltzmann机器(RBM);深度信念网络(DBN);生成对抗性网络(GAN);深度强化学习(DRL);迁移学习。

成为VIP会员查看完整内容
0
65

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

摘要

本文综述了迁移学习在强化学习问题设置中的应用。RL已经成为序列决策问题的关键的解决方案。随着RL在各个领域的快速发展。包括机器人技术和游戏,迁移学习是通过利用和迁移外部专业知识来促进学习过程来帮助RL的一项重要技术。在这篇综述中,我们回顾了在RL领域中迁移学习的中心问题,提供了一个最先进技术的系统分类。我们分析他们的目标,方法,应用,以及在RL框架下这些迁移学习技术将是可接近的。本文从RL的角度探讨了迁移学习与其他相关话题的关系,并探讨了RL迁移学习的潜在挑战和未来发展方向。

关键词:迁移学习,强化学习,综述,机器学习

介绍

强化学习(RL)被认为是解决连续决策任务的一种有效方法,在这种方法中,学习主体通过与环境相互作用,通过[1]来提高其性能。源于控制论并在计算机科学领域蓬勃发展的RL已被广泛应用于学术界和工业界,以解决以前难以解决的任务。此外,随着深度学习的快速发展,应用深度学习服务于学习任务的集成框架在近年来得到了广泛的研究和发展。DL和RL的组合结构称为深度强化学习[2](Deep Reinforcement Learning, DRL)。

DRL在机器人控制[3]、[4]、玩[5]游戏等领域取得了巨大的成功。在医疗保健系统[6]、电网[7]、智能交通系统[8]、[9]等领域也具有广阔的应用前景。

在这些快速发展的同时,DRL也面临着挑战。在许多强化学习应用中,环境模型通常是未知的,只有收集到足够的交互经验,agent才能利用其对环境的知识来改进其性能。由于环境反馈的部分可观察性、稀疏性或延迟性以及高维观察和/或行动空间等问题,学习主体在没有利用任何先验知识的情况下寻找好的策略是非常耗时的。因此,迁移学习作为一种利用外部专业知识来加速学习过程的技术,在强化学习中成为一个重要的课题。

在监督学习(SL)领域[10]中,TL得到了广泛的研究。与SL场景相比,由于MDP环境中涉及的组件更多,RL中的TL(尤其是DRL中的TL)通常更复杂。MDP的组件(知识来自何处)可能与知识转移到何处不同。此外,专家知识也可以采取不同的形式,以不同的方式转移,特别是在深度神经网络的帮助下。随着DRL的快速发展,以前总结用于RL的TL方法的努力没有包括DRL的最新发展。注意到所有这些不同的角度和可能性,我们全面总结了在深度强化学习(TL in DRL)领域迁移学习的最新进展。我们将把它们分成不同的子主题,回顾每个主题的理论和应用,并找出它们之间的联系。

本综述的其余部分组织如下:在第2节中,我们介绍了强化学习的背景,关键的DRL算法,并带来了这篇综述中使用的重要术语。我们还简要介绍了与TL不同但又紧密相关的相关研究领域(第2.3节)。

在第3节中,我们采用多种视角来评价TL方法,提供了对这些方法进行分类的不同方法(第3.1节),讨论了迁移源和目标之间的潜在差异(第3.2节),并总结了评价TL有效性的常用指标(第3.3节)。

第4节详细说明了DRL领域中最新的TL方法。特别是,所讨论的内容主要是按照迁移知识的形式组织的,如成型的奖励(4.1节)、先前的演示(4.2节)、专家策略(4.3节),或者按照转移发生的方式组织的,如任务间映射(4.4节)、学习可转移表示(4.5节和4.6节)等。我们在第5节讨论了TL在DRL中的应用,并在第6节提供了一些值得研究的未来展望。

成为VIP会员查看完整内容
0
75

深度学习算法已经在图像分类方面取得了最先进的性能,甚至被用于安全关键应用,如生物识别系统和自动驾驶汽车。最近的研究表明,这些算法甚至可以超越人类的能力,很容易受到对抗性例子的攻击。在计算机视觉中,与之相对的例子是恶意优化算法为欺骗分类器而产生的含有细微扰动的图像。为了缓解这些漏洞,文献中不断提出了许多对策。然而,设计一种有效的防御机制已被证明是一项困难的任务,因为许多方法已经证明对自适应攻击者无效。因此,这篇自包含的论文旨在为所有的读者提供一篇关于图像分类中对抗性机器学习的最新研究进展的综述。本文介绍了新的对抗性攻击和防御的分类方法,并讨论了对抗性实例的存在性。此外,与现有的调查相比,它还提供了相关的指导,研究人员在设计和评估防御时应该考虑到这些指导。最后,在文献综述的基础上,对未来的研究方向进行了展望。

https://www.zhuanzhi.ai/paper/396e587564dc2922d222cd3ac7b84288

成为VIP会员查看完整内容
0
46

随着web技术的发展,多模态或多视图数据已经成为大数据的主要流,每个模态/视图编码数据对象的单个属性。不同的模态往往是相辅相成的。这就引起了人们对融合多模态特征空间来综合表征数据对象的研究。大多数现有的先进技术集中于如何融合来自多模态空间的能量或信息,以提供比单一模态的同行更优越的性能。最近,深度神经网络展示了一种强大的架构,可以很好地捕捉高维多媒体数据的非线性分布,对多模态数据自然也是如此。大量的实证研究证明了深多模态方法的优势,从本质上深化了多模态深特征空间的融合。在这篇文章中,我们提供了从浅到深空间的多模态数据分析领域的现有状态的实质性概述。在整个调查过程中,我们进一步指出,该领域的关键要素是多模式空间的协作、对抗性竞争和融合。最后,我们就这一领域未来的一些方向分享我们的观点。

成为VIP会员查看完整内容
0
179

深度学习在人工智能领域已经取得了非常优秀的成就,在有监督识别任务中,使用深度学习算法训练海量的带标签数据,可以达到前所未有的识别精确度。但是,由于对海量数据的标注工作成本昂贵,对罕见类别获取海量数据难度较大,所以如何识别在训练过程中少见或从未见过的未知类仍然是一个严峻的问题。针对这个问题,该文回顾近年来的零样本图像识别技术研究,从研究背景、模型分析、数据集介绍、实验分析等方面全面阐释零样本图像识别技术。此外,该文还分析了当前研究存在的技术难题,并针对主流问题提出一些解决方案以及对未来研究的展望,为零样本学习的初学者或研究者提供一些参考。

成为VIP会员查看完整内容
0
51

【简介】近些年,将计算智能应用于金融业已经引起了学术界和金融界的广泛关注。研究人员发布了大量的研究成果和各种各样的模型。同时,在机器学习领域,深度学习在近期也引起了大量的关注,主要是因为这些经典的深度学习模型表现优于传统模型。金融是深度学习模型开始受到关注的一个特殊领域,然而,这个领域非常开放,仍然存在很多研究机会。在这篇综述中,我们尝试着提供一个已经开发好的,可用在金融应用当中的深度学习模型。我们不仅根据模型的实现进行了分类,还对这些深度学习模型进行了分析。此外,我们还旨在确定未来深度学习模型在金融领域有可能的实现,以及强调了该领域正在进行的研究。

原始链接:

https://arxiv.org/abs/2002.05786

介绍

股票市场预测、算法交易、信用风险评估、投资组合配置、资产定价和衍生品市场都是机器学习研究人员关注的领域,他们致力于开发出能够为金融业提供实时工作解决方案的模型。因此,目前文献中存在大量有关的出版物和实现。

然而,在机器学习领域中,深度学习是一个新兴的领域,并且每年都在快速增长。结果越来越多的深度学习金融模型开始出现在会议和期刊上。我们在这篇论文中关注的是目前在金融领域深度学习模型之间的不同之处。在这种方式下,依据各自的兴趣点研究人员和从业者可以决定他们应该走哪条路。

在这篇论文中,我们尝试着为下列研究中的问题提供答案:

  • 有哪些金融应用可以用到深度学习?
  • 当前在这些应用领域中的研究现状如何?
  • 从学术/工业研究的角度来看,哪些领域有很大的潜力?
  • 在不同的应用环境中哪些深度学习模型表现更好?
  • 深度学习模型和传统的机器学习技术相比如何?
  • 在金融领域深度学习研究的未来方向是什么?

金融领域中的机器学习

早在40年前,金融就一直是最受机器学习关注的应用领域之一。到目前为止,在金融的各个领域已经发表了成千上万的研究论文,整体的兴趣似乎不会很快消失。尽管这篇调查论文仅仅关注于深度学习的实现,但是我们希望通过引用过去20年的相关调查,为读者提供一些以前在金融领域关于机器学习研究的见解。

深度学习

深度学习是一种特定类型的机器学习,由多个ANN层组成。它为数据建模提供了高级别的抽象。目前,主要的深度学习模型有以下几种:

DMLP(深度多层感知机)、CNNs、RNNs、LSTM、RBMs(受限波兹曼机)、DBNs(Deep Belief Networks 和自编码器(AEs)。

成为VIP会员查看完整内容
0
99

题目: The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches

简介:

近年来,深度学习在各个应用领域都取得了巨大的成功。这一新的机器学习领域发展迅速,已经应用到大多数传统的应用领域,以及一些提供更多机会的新领域。基于不同的学习类别,提出了不同的学习方法,包括监督学习、半监督学习和非监督学习。当与传统的机器学习方法在图像理、计算机视觉、语音识别、机器翻译、艺术、医学成像、医疗信息处理、机器人控制、生物信息学、自然语言处理(NLP),网络安全等相比,实验结果表明了使用深度学习最先进的性能。

本报告从深度神经网络(DNN)开始,简要介绍了DL领域的研究进展。调查涵盖了卷积神经网络(CNN)、递归神经网络(RNN),包括长短时记忆(LSTM)和门控递归单元(GRU)、自动编码器(AE)、深度信念网络(DBN)、生成对抗网络(GAN)和深度强化学习(DRL)。此外,我们还介绍了最新的发展,例如基于这些DL方法的高级DL变体技术。本研究考虑了2012年以后发表的关于深度学习历史开始的大部分论文。此外,在不同的应用领域中探索和评估过的DL方法也包括在本次调查中。我们还包括最近开发的用于实现和评估深度学习方法的框架、sdk和基准数据集。有一些关于使用神经网络进行深度学习的调查和关于RL的调查已经发表。然而,这些论文并没有讨论用于训练大规模深度学习模型的个别先进技术和最近发展起来的生成模型方法。

作者简介:

Md Zahangir Alom博士是美国俄亥俄州代顿大学的研究工程师。他分别于2008年和2012年获得了孟加拉国拉杰沙伊大学(University of Rajshahi)和韩国全北国立大学(Chonbuk National University)的计算机工程学士和硕士学位。2018年,他获得了戴顿大学电子和计算机工程博士学位。他的研究兴趣包括机器学习、深度学习、医学成像和计算病理学。他是IEEE学生会员,国际神经网络协会(INNS)会员,美国数字病理学协会(DPA)会员。

Tarek M. Taha博士是代顿大学(University of Dayton)电子和计算机工程教授。他的研究兴趣是神经形态计算和高性能计算。Tarek M. Taha博士是美国国家科学基金会职业奖的获得者。

成为VIP会员查看完整内容
0
38
小贴士
相关VIP内容
专知会员服务
53+阅读 · 2020年9月30日
专知会员服务
75+阅读 · 2020年9月20日
专知会员服务
46+阅读 · 2020年9月10日
专知会员服务
15+阅读 · 2020年8月19日
专知会员服务
179+阅读 · 2020年6月16日
专知会员服务
107+阅读 · 2020年6月12日
专知会员服务
51+阅读 · 2020年4月4日
专知会员服务
152+阅读 · 2020年3月6日
专知会员服务
99+阅读 · 2020年2月27日
相关论文
A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
Jorge Agnese,Jonathan Herrera,Haicheng Tao,Xingquan Zhu
5+阅读 · 2019年10月21日
CapsAttacks: Robust and Imperceptible Adversarial Attacks on Capsule Networks
Alberto Marchisio,Giorgio Nanfa,Faiq Khalid,Muhammad Abdullah Hanif,Maurizio Martina,Muhammad Shafique
3+阅读 · 2019年5月24日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
4+阅读 · 2019年4月17日
Context-aware Neural-based Dialog Act Classification on Automatically Generated Transcriptions
Daniel Ortega,Chia-Yu Li,Gisela Vallejo,Pavel Denisov,Ngoc Thang Vu
3+阅读 · 2019年2月28日
Deep Face Recognition: A Survey
Mei Wang,Weihong Deng
13+阅读 · 2019年2月12日
Chen Chen,Shuai Mu,Wanpeng Xiao,Zexiong Ye,Liesi Wu,Fuming Ma,Qi Ju
7+阅读 · 2018年5月18日
Pierre-Luc Dallaire-Demers,Nathan Killoran
3+阅读 · 2018年4月30日
Avik Ray,Joe Neeman,Sujay Sanghavi,Sanjay Shakkottai
3+阅读 · 2018年2月24日
Masahiro Suzuki,Kotaro Nakayama,Yutaka Matsuo
5+阅读 · 2018年1月26日
Pin-Jung Chen,I-Hung Hsu,Yi-Yao Huang,Hung-Yi Lee
4+阅读 · 2017年12月2日
Top