【导读】佛罗里达大学电子与计算机工程系教授Sean Meyn撰写的新书稿《强化学习与控制系统》,重点讲述了与强化学习最相关的控制基础,以及基于这些基础的RL算法设计的大量工具。

Sean Meyn,佛罗里达大学电子与计算机工程系教授兼Robert C. Pittman杰出学者主席,认知与控制实验室主任,佛罗里达可持续能源研究所所长。Sean于1982年获得加利福尼亚大学洛杉矶分校数学学士学位,于1987年获得麦吉尔大学电子工程博士学位。他的学术研究兴趣包括决策和控制的理论与应用,随机过程和优化。他在这些主题上的研究获得了许多奖项,并且是IEEE会士。

http://www.meyn.ece.ufl.edu/

为了定义强化学习(RL),首先需要定义自动控制。例如,在你的日常生活中,可能包括你的汽车巡航控制,你的空调恒温器,冰箱和热水器,以及现代的衣物烘干机的决策规则。有收集数据的传感器,有收集数据以了解世界状态的计算机”(汽车以正确的速度行驶吗?毛巾还湿吗?),根据这些测量结果,由计算机驱动的算法会发出命令来调整需要调整的东西:油门、风扇速度、加热盘管电流,或者……更令人兴奋的例子包括太空火箭、人造器官和微型机器人来进行手术。RL的目标是真正自动的自动控制:没有任何物理学或生物学或医学知识,RL算法调整自己成为一个超级控制器: 最平稳的飞行进入太空,和最专业的微型外科医生! 这个梦想在大多数应用中肯定是遥不可及的,但最近的成功故事鼓舞了工业界、科学家和新一代学生。继2015年击败欧洲围棋冠军樊麾之后,DeepMind的AlphaGo再次刷新了世界纪录。不久之后的新闻是令人震惊的AlphaZero续集,它在“没有任何专家帮助的情况下”自学下国际象棋和围棋。这在现在看来已经不是什么新鲜事了,似乎每个月都会有新的突破。

今天的强化学习有两个同等重要的基础: 1. 最优控制:两个最著名的RL算法,TD-和q -学习,都是关于逼近最优控制的核心价值函数。2. 统计和信息理论。RL中的loration是本书的一大焦点,它强调了最优控制的几何性质,以及为什么创建可靠的学习算法并不困难。我们不会忽视第二个基础: 动机和成功的启发式将在不深入研究理论的情况下进行解释。读者将学到足够的知识,开始尝试自制的计算机代码,并拥有一个大的算法设计选择库。在完成这本书的一半之前,我希望学生能对为什么这些算法被期望是有用的以及为什么它们有时会失败有一个扎实的理解。

本书的重点是与强化学习最相关的控制基础,以及基于这些基础的RL算法设计的大量工具。

成为VIP会员查看完整内容
0
71

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

这本书的目的是介绍计算机科学家所需要的一些基本数学知识。读者并不期望自己是数学家,我们希望下面的内容对你有用。

成为VIP会员查看完整内容
0
30

本书提供了分布式优化、博弈和学习的基本理论。它包括那些直接从事优化工作的人,以及许多其他问题,如时变拓扑、通信延迟、等式或不等式约束,以及随机投影。本书适用于在动态经济调度、需求响应管理和智能电网插电式混合动力汽车路由等领域使用分布式优化、博弈和学习理论的研究人员和工程师。

无线技术和计算能力的进步使得理论、模型和工具的发展成为必要,以应对网络上大规模控制和优化问题带来的新挑战。经典的优化方法是在所有问题数据都可用于集中式服务器的前提下工作的。然而,这一前提不适用于由电力系统、传感器网络、智能建筑和智能制造等应用驱动的分布式环境中的大型网络系统。在这样的环境中,每个节点(agent)根据自己的数据(信息)以及通过底层通信网络从相邻的agent接收到的信息进行本地计算,从而分布式地解决大规模控制和优化问题。最终,集中式优化方法必然会走向衰落,从而产生一种新的分布式优化类型,它考虑了多个agent之间的有效协调,即所有agent共同协作,使一个局部目标函数之和的全局函数最小化。

本书研究了近年来分布式优化问题中的几个标准热点问题,如无约束优化、有约束优化、分布式博弈和分布式/分散学习等。为了强调分布式优化在这些主题中的作用,我们将重点放在一个简单的原始(次)梯度方法上,但我们也提供了网络中其他分布式优化方法的概述。介绍了分布式优化框架在电力系统控制中的应用。这本书自然主要包括三个部分。第一部分讨论了分布式优化算法理论,共分为四章:(1)多智能体时滞网络中的协同分布式优化;(2)时变拓扑多智能体系统的约束一致性;(3)不等式约束和随机投影下的分布式优化;(4)随机矩阵有向图上的加速分布优化。第二部分作为过渡,研究了分布式优化算法理论及其在智能电网动态经济调度问题中的应用,包括两章:(5)时变有向图约束优化的线性收敛性;(6)时变有向图上经济调度的随机梯度推动。第三部分对分布式优化、博弈和学习算法理论进行了分析和综合,本部分所有算法都是针对智能电网系统内的特定案例场景设计的。本部分共分三章:(7)智能微电网能源交易博弈中的强化学习;(8)不完全信息约束博弈的强化学习;(9)基于拥塞博弈的插电式混合动力汽车路径选择强化学习。其中,给出了仿真结果和实际应用实例,以说明前面提出的优化算法、博弈算法和学习算法的有效性和实用性。

成为VIP会员查看完整内容
0
63

数据驱动的发现正在彻底改变复杂系统的建模、预测和控制。这本教科书汇集了机器学习、工程数学和数学物理,将动态系统的建模和控制与现代数据科学方法相结合。它强调了科学计算领域的许多最新进展,使数据驱动的方法能够应用于各种复杂系统,如湍流、大脑、气候、流行病学、金融、机器人和自主。旨在在工程和物理科学的高级本科和开始研究生,文本提出了从介绍到艺术的状态的一系列主题和方法。

主要特点:

  • 深入的工作示例与全面的开源代码

  • 对复杂概念及其应用的简明易懂的解释

  • 广泛的在线补充包括练习,案例研究,课程视频,数据和补充代码

第一部分:降维与变换

尽管测量和计算的分辨率迅速提高,但许多复杂系统在数据中表现出主导的低维模式。模式提取涉及到找到坐标变换,从而简化系统。的确,数学物理的丰富历史是以坐标变换为中心的(例如,谱分解、傅里叶变换、广义函数等),尽管这些技术在很大程度上仅限于简单的理想化几何和线性动力学。获得数据驱动转换的能力为将这些技术推广到具有更复杂几何和边界条件的新研究问题提供了机会。

这本书的这一部分将调查两个最强大和普遍的算法转换和减少数据:奇异值分解(SVD)和傅立叶变换。数据可以在这些转换后的坐标系统中压缩,这一事实使建模和控制的高效传感和紧凑表示成为可能。因此,第三章涉及到利用这种低维结构的稀疏采样方法。

第二部分:机器学习和数据分析

机器学习是基于数据优化技术的。目标是找到一个低秩子空间来最优地嵌入数据,以及回归方法来聚类和分类不同的数据类型。因此,机器学习提供了一套有原则的数学方法,用于从数据中提取有意义的特征,即数据挖掘,以及将数据分成不同的有意义的模式,可以用于决策制定、状态估计和预测。具体来说,它从数据中学习并根据数据做出预测。对于商业应用程序,这通常被称为预测分析,它处于现代数据驱动决策制定的前沿。在一个集成系统中,如自主机器人,各种机器学习组件(例如,处理视觉和触觉刺激)可以被集成,形成我们现在所说的人工智能(AI)。明确地说,人工智能建立在集成的机器学习算法之上,而机器学习算法又从根本上植根于优化。

第三部分:动力学和控制

数据驱动的发现正在彻底改变我们建模、预测和控制复杂系统的方式。现代最紧迫的科学和工程问题是不服从经验模型或基于第一性原理的推导的。研究人员越来越多地转向数据驱动的方法,用于各种复杂系统,如动荡、大脑、气候、流行病学、金融、机器人和自主。这些系统通常是非线性的、动态的、空间和时间的多尺度的、高维的,具有主导的潜在模式,应该为感知、预测、估计和控制的最终目标进行特征化和建模。借助现代数学方法,以及前所未有的可用数据和计算资源,我们现在能够解决以前无法实现的挑战问题。

第四部分:简化订单模型(ROMs)

适当的正交分解(POD)是应用于偏微分方程(PDEs)的SVD算法。因此,它是研究复杂时空系统最重要的降维技术之一。这样的系统典型的例子是非线性偏微分方程,它规定了在给定的物理、工程和/或生物系统中感兴趣的数量在时间和空间上的进化。POD的成功与一个普遍存在的现象有关:在大多数复杂系统中,有意义的行为被编码在动态活动的低维模式中。POD技术试图利用这一事实,以生产能够精确建模控制复杂系统的完整时空演化的低秩动力系统。具体来说,简化阶模型(ROMs)利用POD模式将PDE动力学投影到低阶子空间,在这些子空间中,控制PDE模型的模拟可以更容易地进行评估。重要的是,ROM产生的低秩模型在计算速度方面有了显著的改进,潜在地使昂贵的PDE系统蒙特卡罗模拟、参数化PDE系统的优化和/或基于PDE的系统的实时控制成为可能。

成为VIP会员查看完整内容
0
54

本课程关注控制理论和强化学习的理论介绍,侧重于连续状态空间以及物理世界和机器人技术的应用。我们强调计算效率的算法和可证明的界。特别关注RL中非随机控制和遗憾最小化的新方法。我们将与该领域的经典方法论进行比较和对比。

本课程的练习和项目将需要用python编写代码。

这门课程对所有学生开放,但要求有很强的数学背景。

https://sites.google.com/view/cos59x-cct/home

深度学习的先驱、图灵奖获得者Yann Lecun教授有一种非常简洁明了地抓住问题症结的气质。2020年2月左右,他在巴巴多斯研讨会上说,

“控制=梯度强化学习”。

强化学习和控制理论的关键区别在于它们所操作的空间。强化学习的范围通常位于离散状态空间(如围棋、国际象棋),而控制理论通常处理涉及物理和连续空间(如机器人)的问题。物理学和结构环境的知识使我们能够利用差分信息。

后者允许我们使用强大的数学优化和凸松弛技术来设计高效的算法。这是自适应非随机控制理论的主题,也是本课程的主题。

成为VIP会员查看完整内容
0
32

强化学习(RL)作为一种可行且强大的技术,正逐渐成为一种解决各种复杂业务问题的技术,这些问题涉及不确定条件下的连续优化决策。尽管RL被归类为机器学习(ML)的一个分支,但它往往与ML(监督学习和非监督学习)的其他分支有很大的不同。事实上,RL似乎掌握着开启人工智能前景的钥匙——机器可以根据观察到的异常信息调整决策,同时不断转向最佳结果。它在无人驾驶汽车、机器人和策略游戏等备受关注的问题上的应用,预示着未来RL算法将拥有远超人类的决策能力。但是当谈到RL的学习应用时,人们似乎不愿意直接进入。我们经常听到甚至技术人员声称RL涉及“高等数学”和“复杂工程”,所以似乎有一个心理障碍进入。虽然现实世界的RL算法和实现在克服众所周知的最后业务问题时确实变得相当复杂,但是RL的基础实际上不需要繁重的技术机器就可以学会。本书的核心目的是通过在理解的深度和保持基本技术内容之间找到平衡来揭开RL的神秘面纱。因此,我们将学习:

  • 您将了解简单而强大的马尔可夫决策过程(MDPs)理论——不确定情况下的序列最优决策框架。您将坚定地理解Bellman方程的力量,它是所有动态规划和所有RL算法的核心。

  • 您将掌握动态规划(DP)算法,这是一类(用人工智能的语言)规划算法。您将学习策略迭代、值迭代、逆向归纳、近似动态规划和广义策略迭代的重要概念,它是所有DP和所有RL算法的核心。

  • 您将获得各种强化学习(RL)算法的坚实的理解,从基本算法如SARSA和Q-Learning,并进入学习在实践中工作得很好的几个重要的算法,包括梯度时间差分,深度Q网络,最小二乘策略迭代,策略梯度,蒙特卡罗树搜索。您将了解如何利用bootstrapping、off-policy学习和基于深度神经网络的函数逼近在这些算法中获得优势。您还将学习如何平衡探索和利用Multi-Armed Bandits技术,如置信上限,汤普森采样,梯度盗匪和信息状态空间算法。

  • 您将练习大量的模型和算法的“从头开始”Python实现。贯穿全书,我们强调了良好的Python编程实践,包括接口设计、类型注释、函数式编程和基于继承的多态(始终确保编程原则反映数学原则)。从这本书中获得的更大的收获是一种将应用数学概念与软件设计范例相结合的罕见的(高需求的)能力。

成为VIP会员查看完整内容
0
69

现代人工智能(AI)系统通常需要在一个未知的、不确定的、可能敌对的环境中,通过积极地与环境交互来收集相关数据,从而做出连续的决策。强化学习(RL)是一个通用框架,可以捕获交互式学习设置,并已被用于设计智能代理,以实现超人水平的表现,在具有挑战性的任务,如围棋,电脑游戏,机器人操作。

这门研究生水平的课程着重于强化学习的理论和算法基础。本课程的四个主题为: (1)可证明有效的探索; (2)策略优化(特别是策略梯度); (3)控制; (4)模仿学习。

通过本课程,学生将能够理解经典的和最新的可证明正确的RL算法及其分析。学生将能够对与RL相关的课题进行研究。

成为VIP会员查看完整内容
0
44

这是一本关于理论计算机科学的本科入门课程的教科书。这本书的教育目的是传达以下信息:

• 这种计算出现在各种自然和人为系统中,而不仅仅是现代的硅基计算机中。 • 类似地,除了作为一个极其重要的工具,计算也作为一个有用的镜头来描述自然,物理,数学,甚至社会概念。 • 许多不同计算模型的普遍性概念,以及代码和数据之间的二元性相关概念。 • 一个人可以精确地定义一个计算的数学模型,然后用它来证明(有时只是猜测)下界和不可能的结果。 • 现代理论计算机科学的一些令人惊讶的结果和发现,包括np完备性的流行、交互作用的力量、一方面的随机性的力量和另一方面的去随机化的可能性、在密码学中“为好的”使用硬度的能力,以及量子计算的迷人可能性。

成为VIP会员查看完整内容
0
64

3D建模初学者指南是一个基于项目的,直接介绍计算机辅助设计(CAD)。您将学习如何使用Autodesk Fusion 360,世界上最强大的免费CAD软件,模型小工具,3D打印您的设计,并创建逼真的图像,就像一个工程专业人员,没有经验的要求!

动手建模的项目和一步步的指示贯穿全书介绍基本的3D建模概念。在您完成项目的过程中,您将掌握参数化建模的基础知识,并学习如何创建您自己的模型,从简单的形状到多部件装配。一旦您掌握了这些基础知识,您将学习更高级的建模概念,如扫描、阁楼、表面和渲染,然后将它们结合在一起创建一个机械手臂。

您将学习如何:

  • 设计一个移动机械臂,一个门铰链,一个茶壶,和一个20面的模具
  • 为制造和专利申请创建专业技术图纸
  • 模型弹簧和其他复杂的曲线,以创建现实的设计
  • 使用基本的Fusion 360工具,如挤压、旋转和打孔
  • 掌握先进工具,如线圈和线
成为VIP会员查看完整内容
1
15

这本书全面介绍优化工程系统设计的实用算法。这本书从工程的角度进行优化,其目标是设计一个系统来优化受约束的一组指标。读者将学习一系列挑战的计算方法,包括高维搜索空间,处理有多个竞争目标的问题,以及适应指标中的不确定性。图表、例子和练习传达了数学方法背后的直觉。文本提供了Julia编程语言的具体实现。

https://mitpress.mit.edu/books/algorithms-optimization

许多学科的核心都涉及到优化。在物理学中,系统被驱动到他们的最低能量状态服从物理定律。在商业上,公司的目标是股东价值最大化。在生物学中,越健康的生物体越有可能生存下来。这本书将从工程的角度关注优化,目标是设计一个系统来优化受约束的一组指标。这个系统可以是一个复杂的物理系统,比如飞机,也可以是一个简单的结构,比如自行车车架。这个系统甚至可能不是物理的;例如,我们可能会有兴趣为自动化车辆设计一个控制系统,或设计一个计算机视觉系统来检测肿瘤活检的图像是否为癌。我们希望这些系统能运行得尽可能好。根据应用程序的不同,相关的度量可能包括效率、安全性和准确性。对设计的限制可能包括成本、重量和结构坚固性。

这本书是关于优化的算法,或计算过程。给定系统设计的一些表示,如编码机翼几何的一组数字,这些算法将告诉我们如何搜索空间的可能设计,以找到最好的一个。根据应用程序的不同,这种搜索可能涉及运行物理实验,比如风洞测试,也可能涉及计算解析表达式或运行计算机模拟。我们将讨论解决各种挑战的计算方法,例如如何搜索高维空间,处理有多个竞争目标的问题,以及适应指标中的不确定性。

成为VIP会员查看完整内容
0
163

决策理论是现代人工智能和经济学的基础。本课程主要从统计学的角度,也从哲学的角度,为决策理论打下坚实的基础。本课程有两个目的:

  • 深入了解统计决策理论、实验设计的自动化方法,并将其与人类决策联系起来。
  • 通过开发算法和智能代理的实验,将该理论应用到强化学习和人工智能的实际问题中。

课程可分为两部分。

  • 第一部分,我们介绍了主观概率和效用的概念,以及如何用它们来表示和解决决策问题。然后讨论未知参数的估计和假设检验。最后,我们讨论了顺序抽样、顺序实验,以及更一般的顺序决策。

  • 第二部分是不确定性下的决策研究,特别是强化学习和专家咨询学习。首先,我们研究几个有代表性的统计模型。然后,我们给出了使用这些模型做出最优决策的算法的概述。最后,我们来看看学习如何根据专家的建议来行动的问题,这个领域最近在在线广告、游戏树搜索和优化方面有很多应用。

成为VIP会员查看完整内容
0
107
小贴士
相关VIP内容
专知会员服务
30+阅读 · 7月27日
专知会员服务
32+阅读 · 2020年12月24日
专知会员服务
69+阅读 · 2020年12月22日
专知会员服务
44+阅读 · 2020年9月27日
专知会员服务
64+阅读 · 2020年9月17日
专知会员服务
15+阅读 · 2020年9月15日
相关资讯
相关论文
Anuj Dawar,Gregory Wilsenach
0+阅读 · 7月26日
D. Luengo,L. Martino,M. Bugallo,V. Elvira,S. Särkkä
0+阅读 · 7月25日
Jacopo Panerati,Hehui Zheng,SiQi Zhou,James Xu,Amanda Prorok,Angela P. Schoellig
0+阅读 · 7月25日
Tanguy Gernot,Patrick Lacharme
0+阅读 · 7月24日
Zhenzi Weng,Zhijin Qin,Geoffrey Ye Li
0+阅读 · 7月22日
Andrea Celli,Alberto Marchesi,Gabriele Farina,Nicola Gatti
3+阅读 · 2020年6月20日
Rahaf Aljundi,Klaas Kelchtermans,Tinne Tuytelaars
4+阅读 · 2018年12月10日
Srikrishna Karanam,Mengran Gou,Ziyan Wu,Angels Rates-Borras,Octavia Camps,Richard J. Radke
5+阅读 · 2018年2月14日
Top