在建立国家间军事联盟模型时,学者们会做出简化假设。然而,大多数人都认识到这些经常被引用的假设过于简单。本文利用监督和非监督机器学习的发展来评估这些假设的有效性,并研究它们如何影响对联盟政治的理解。报了文发现了一系列有助于更好地理解联盟的原因和后果的结论。

研究的第一个假设认为,当国家面临共同的外部安全威胁时,它们会结成联盟,汇聚军事实力,以增强自身安全,确保自身生存。外交史和安全研究领域的许多人批评了这一广为接受的 “能力聚合模型”,指出各国结盟的动机多种多样。在三篇文章中的第一篇中,介绍了一种无监督机器学习算法,旨在检测纵向网络中行为体如何形成关系的变化。这样,在第二篇文章中评估各国结成联盟的不同动机。研究发现,国家结成联盟是为了实现能力聚合之外的外交政策目标,包括巩固非安全关系和追求国内改革。

学者们在建立联盟与冲突之间关系的模型时会引用第二个假设,即常规假设联盟的形成与盟国之一受到攻击的概率无关。这与能力聚合模型(Capability Aggregation Model)的预期形成了鲜明对比,后者表明外部威胁和盟国对侵略者攻击的预期会影响结盟的决定。在最后一篇文章中,研究了这一假设以及联盟与冲突之间的因果关系。具体来说,使用监督机器学习和广义联合回归模型(GJRMs)将冲突因果路径上的联盟内生化。结果质疑了对联盟与冲突关系的传统理解,即联盟既不会阻止冲突,也不会引发冲突。

成为VIP会员查看完整内容
17

相关内容

人工智能在军事中可用于多项任务,例如目标识别、大数据处理、作战系统、网络安全、后勤运输、战争医疗、威胁和安全监测以及战斗模拟和训练。
《地面部队移动联网控制系统的红队分析》97页
专知会员服务
17+阅读 · 11月1日
《基于信念的决策建模计算框架》141页
专知会员服务
55+阅读 · 4月27日
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
20+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
21+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
15+阅读 · 2008年12月31日
Arxiv
158+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
408+阅读 · 2023年3月31日
Arxiv
68+阅读 · 2023年3月26日
Arxiv
21+阅读 · 2023年3月17日
VIP会员
相关基金
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
20+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
21+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
15+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员