本课程简要概括了深度学习讲座中最重要的数学原理。为了提高学生在深度学习课程中的背景知识,讲述一系列关于相关概念(线性代数、微分、概率/信息论)的微教程。
在过去的十年中,深度神经网络已经成为人工智能许多领域不可或缺的工具,包括计算机视觉、计算机图形学、自然语言处理、语音识别和机器人技术。本课程将介绍深度神经网络的实践和理论原理。在其他主题中,我们将涵盖计算图、激活函数、损失函数、训练、正则化和数据增强,以及各种基本和最先进的深度神经网络架构,包括卷积网络和图神经网络。本课程还将介绍深度生成模型,如自动编码器、变分自动编码器和生成对抗网络。此外,在整个课程中还将介绍来自不同领域的应用。本教程将通过在Python和PyTorch中实现和应用深度神经网络来加深对它们的理解。 https://www.youtube.com/playlist?list=PL05umP7R6ij0bo4UtMdzEJ6TiLOqj4ZCm