几何深度学习药物发现
药物发现是一个非常漫长和昂贵的过程,平均需要10年以上,花费25亿美元来开发一种新药。人工智能有可能通过从大量生物医学数据中提取证据,显著加快药物发现的进程,从而彻底改变整个制药行业。特别是,图表示学习和几何深度学习——机器学习和数据挖掘社区中一个快速增长的主题,专注于图结构和3D数据的深度学习——已经看到了药物发现的巨大机遇,因为该领域的许多数据都表示为图形或3D结构(如分子,蛋白质,生物医学知识图谱)。在这次演讲中,我将介绍我们在药物发现几何深度学习方面的最新进展,以及一个新发布的用于药物发现的开源机器学习平台——TorchDrug。