知识图谱推理是一个基础问题,在电子商务推荐、生物医学知识图谱药品再利用等领域有着重要的应用。在本教程中,我将全面介绍知识图谱推理的最新进展,包括:(1)知识图谱嵌入的方法(如TransE、TransR和RotatE);(2)传统的归纳逻辑规划方法和最新的神经逻辑规划方法;(3)结合神经和符号逻辑方法进行知识图谱推理的最新进展。
地址:
https://hub.baai.ac.cn/view/3865
唐建博士现任加拿大蒙特利尔学习算法研究所(Mila) 以及蒙特利尔大学计算机学院、商学院助理教授,加拿大人工智能讲习教授。主要研究兴趣包括图表示学习、图神经网络,生成模型、知识图谱以及药物发现。2014年于北京大学信息科学技术学院获得博士学位,2014-2016年任职微软亚洲研究院副研究员,2016-2017年密歇根大学和卡内基梅隆大学联合培养博士后。2014年博士期间获得机器学习三大顶级会议ICML的最佳论文,2016年获得数据挖掘顶级会议WWW的最佳论文提名,2020年获得Amazon以及腾讯教师研究奖。他是图表示学习领域的代表性人物,发表了图表示学习领域一系列代表性的工作如LINE、LargVis、RotatE等。他发表的图表示学习算法LINE被广泛认可,是WWW会议在2015-2019期间引用次数最多的论文。
https://jian-tang.com/
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“KGNS” 可以获取《【唐建博士】知识图谱上的神经和符号逻辑推理,99页ppt》专知下载链接索引