零样本学习旨在通过运用已学到的已知类知识去认知未知类.近年来,“数据+知识驱动”已经成为当下的新潮流,而在计算机视觉领域内的零样本任务中,“知识”本身却缺乏统一明确的定义.本文针对这种情况,尝试从知识的角度出发,梳理了本领域内“知识”这一概念所覆盖的范畴,共划分为初级知识、抽象知识以及外部知识.基于前面对知识的定义和划分梳理了当前的零样本学习(主要是图像分类任务的模型)工作,分为基于初级知识的零样本模型、基于抽象知识的零样本模型以及引入外部知识的零样本模型.本文还对领域内存在的域偏移和枢纽点问题进行了阐述,并基于问题对现有工作进行了总结归纳.最后总结了目前常用的图像分类任务的数据集和知识库,图像分类实验评估标准以及代表性的模型实验结果;并对未来工作进行了展望.
http://www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6146&flag=1