信息论(英语:information theory)是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信道编码定理、信源-信道隔离定理相互联系。

VIP内容

这本最新的教科书是向数学、计算机科学、工程、统计学、经济学或商业研究的新学生介绍概率论和信息理论的一个极好的方式。它只需要基本的微积分知识,首先建立一个清晰和系统的基础: 通过对布尔代数度量的简化讨论,特别关注概率的概念。这些理论思想随后被应用到实际领域,如统计推断、随机游走、统计力学和通信建模。主题涵盖了离散和连续随机变量,熵和互信息,最大熵方法,中心极限定理和编码和信息传输,并为这个新版本添加了关于马尔可夫链和它们的熵的材料。大量的例子和练习包括说明如何使用理论在广泛的应用,与详细的解决方案,大多数练习可在网上找到。

https://www.cambridge.org/core/books/probability-and-information/26E513C2D4C7B8B0709FBAF95A233959#fndtn-information

成为VIP会员查看完整内容
0
28

热门内容

This paper considers the problem of variable-length intrinsic randomness. We propose the average variational distance as the performance criterion from the viewpoint of a dual relationship with the problem formulation of variable-length resolvability. Previous study has derived the general formula of the $\epsilon$-variable-length resolvability. We derive the general formula of the $\epsilon$-variable-length intrinsic randomness. Namely, we characterize the supremum of the mean length under the constraint the value of the average variational distance is smaller than or equal to some constant. Our result clarifies a dual relationship between the general formula of $\epsilon$-variable-length resolvability and that of $\epsilon$-variable-length intrinsic randomness. We also derive a lower bound of the quantity characterizing our general formula.

0
0
下载
预览

最新内容

We consider an energy harvesting transmitter equipped with two batteries having finite storage capacities, communicating over an additive white Gaussian channel. The work is motivated by an observation that many practical batteries, when repeatedly charged after being partially discharged, suffer from degradation in the usable capacity. The capacity can be recovered by completely discharging the battery before charging it fully again. Hence, in this work, we impose the constraint that a battery must be charged (discharged) only after it is fully discharged (charged). Our goal is to maximize the longterm average throughput with non-causal and causal knowledge of the energy arrivals, which we assume to be Bernoulli. We propose two sub-optimal policies and obtain an upper bound on the performance gap (G) from the optimal long-term average throughput that is achieved with infinite capacity batteries. We find that G remains constant as the amount of energy harvested per arrival increases. Numerically, we also find that G decreases with the battery capacity faster than the inverse of the square root of the battery capacity for a specific energy arrival parameters.

0
0
下载
预览

最新论文

We consider an energy harvesting transmitter equipped with two batteries having finite storage capacities, communicating over an additive white Gaussian channel. The work is motivated by an observation that many practical batteries, when repeatedly charged after being partially discharged, suffer from degradation in the usable capacity. The capacity can be recovered by completely discharging the battery before charging it fully again. Hence, in this work, we impose the constraint that a battery must be charged (discharged) only after it is fully discharged (charged). Our goal is to maximize the longterm average throughput with non-causal and causal knowledge of the energy arrivals, which we assume to be Bernoulli. We propose two sub-optimal policies and obtain an upper bound on the performance gap (G) from the optimal long-term average throughput that is achieved with infinite capacity batteries. We find that G remains constant as the amount of energy harvested per arrival increases. Numerically, we also find that G decreases with the battery capacity faster than the inverse of the square root of the battery capacity for a specific energy arrival parameters.

0
0
下载
预览
Top