ODENet is a deep neural network architecture in which a stacking structure of ResNet is implemented with an ordinary differential equation (ODE) solver. It can reduce the number of parameters and strike a balance between accuracy and performance by selecting a proper solver. It is also possible to improve the accuracy while keeping the same number of parameters on resource-limited edge devices. In this paper, using Euler method as an ODE solver, a part of ODENet is implemented as a dedicated logic on a low-cost FPGA (Field-Programmable Gate Array) board, such as PYNQ-Z2 board. Two variants, one for high accuracy and the other for performance, are proposed and implemented on the FPGA board as well. They are evaluated in terms of parameter size, accuracy, execution time, and resource utilization on the FPGA. The results show that an overall execution time of ODENet and its variants is improved by up to 2.50 times compared to a pure software execution when a part of convolution layers is executed by the programmable logic.


翻译:ODENet是一个深层神经网络结构,在这种结构中,ResNet的堆叠结构是用普通的差分方程(ODE)求解器执行的。它可以减少参数数量,并通过选择一个合适的求解器在准确性和性能之间取得平衡。还可以提高精确性,同时对资源有限的边缘设备保留相同数量的参数。在本文中,使用Euler方法作为ODE求解器,ODENet的一部分被作为低成本的FPGA(外地可配置门阵列)板(如PYNQ-Z2版板)的专用逻辑执行。两种变体,一个是高精度的变体,另一个是性能的变体。两种变体在FPGA板上被提出并应用,在参数大小、准确性能、执行时间和资源利用方面对FPGA进行了评价。结果显示,ODENet及其变体的总体执行时间比根据可编程逻辑执行的组合层部分时纯软件执行的时间提高到2.50倍。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
68+阅读 · 2020年6月24日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
110+阅读 · 2020年2月22日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
硬件加速神经网络综述
计算机研究与发展
26+阅读 · 2019年2月1日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
硬件加速神经网络综述
计算机研究与发展
26+阅读 · 2019年2月1日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员