Probabilistic reasoning is an essential tool for robust decision-making systems because of its ability to explicitly handle real-world uncertainty, constraints and causal relations. Consequently, researchers are developing hybrid models by combining Deep Learning with probabilistic reasoning for safety-critical applications like self-driving vehicles, autonomous drones, etc. However, probabilistic reasoning kernels do not execute efficiently on CPUs or GPUs. This paper, therefore, proposes a custom programmable processor to accelerate sum-product networks, an important probabilistic reasoning execution kernel. The processor has an optimized datapath architecture and memory hierarchy optimized for sum-product networks execution. Experimental results show that the processor, while requiring fewer computational and memory units, achieves a 12x throughput benefit over the Nvidia Jetson TX2 embedded GPU platform.
翻译:概率推理是稳健决策系统的基本工具,因为它有能力明确处理现实世界的不确定性、制约因素和因果关系。因此,研究人员正在开发混合模型,将深学习与自我驾驶飞行器、自主无人驾驶飞机等安全关键应用的概率推理相结合。然而,概率推理内核无法有效地对CPU或GPU实施。因此,本文件提议建立一个定制的可编程处理器,以加速成批产品网络,这是一个重要的概率推理执行内核。该处理器有一个优化的数据路径结构和记忆级,优化了对合成产品网络的执行。实验结果显示,该处理器在要求较少计算和记忆单位的同时,在Nvidia Jetson TX2嵌入式 GPU平台上实现了12倍的吞吐效益。