Clinical electroencephalography is routinely used to evaluate patients with diverse and often overlapping neurological conditions, yet interpretation remains manual, time-intensive, and variable across experts. While automated EEG analysis has been widely studied, most existing methods target isolated diagnostic problems, particularly seizure detection, and provide limited support for multi-disorder clinical screening. This study examines automated EEG-based classification across eleven clinically relevant neurological disorder categories, encompassing acute time-critical conditions, chronic neurocognitive and developmental disorders, and disorders with indirect or weak electrophysiological signatures. EEG recordings are processed using a standard longitudinal bipolar montage and represented through a multi-domain feature set capturing temporal statistics, spectral structure, signal complexity, and inter-channel relationships. Disorder-aware machine learning models are trained under severe class imbalance, with decision thresholds explicitly calibrated to prioritize diagnostic sensitivity. Evaluation on a large, heterogeneous clinical EEG dataset demonstrates that sensitivity-oriented modeling achieves recall exceeding 80% for the majority of disorder categories, with several low-prevalence conditions showing absolute recall gains of 15-30% after threshold calibration compared to default operating points. Feature importance analysis reveals physiologically plausible patterns consistent with established clinical EEG markers. These results establish realistic performance baselines for multi-disorder EEG classification and provide quantitative evidence that sensitivity-prioritized automated analysis can support scalable EEG screening and triage in real-world clinical settings.
翻译:临床脑电图常规用于评估具有多样且常重叠的神经系统疾病的患者,然而其判读仍依赖于人工,耗时且在不同专家间存在差异。尽管自动化脑电图分析已被广泛研究,但现有方法大多针对孤立的诊断问题(特别是癫痫发作检测),对多疾病临床筛查的支持有限。本研究考察了基于脑电图的自动化分类在十一个临床相关的神经系统疾病类别上的应用,涵盖急性时间紧迫病症、慢性神经认知与发育障碍,以及具有间接或微弱电生理特征的疾病。脑电图记录采用标准纵向双极导联进行预处理,并通过一个多域特征集进行表征,该特征集捕捉了时域统计量、频谱结构、信号复杂性以及通道间关系。在严重类别不平衡条件下训练疾病感知的机器学习模型,其决策阈值经过显式校准以优先考虑诊断敏感性。在一个大型、异质的临床脑电图数据集上的评估表明,以敏感性为导向的建模在大多数疾病类别上实现了超过80%的召回率,与默认操作点相比,若干低患病率疾病在阈值校准后显示出15-30%的绝对召回率提升。特征重要性分析揭示了与既定临床脑电图标志物一致的、生理学上合理的模式。这些结果为多疾病脑电图分类建立了现实的性能基线,并提供了定量证据,表明优先考虑敏感性的自动化分析能够在真实临床环境中支持可扩展的脑电图筛查与分诊。