Complex networks, such as transportation networks, social networks, or biological networks, capture the complex system they model often by representing only one type of interactions. In real world systems, there may be many different aspects that connect entities together. These can be captured using multilayer networks, which combine different modalities of interactions in a single model. Coupling in multilayer networks may exhibit different properties which can be related to the very nature of the data they model (or to events in time-dependant data). We hypothesise that such properties may be reflected in the way layers are intertwined. In this paper, we investigated these through the prism of layer entanglement in coupled multilayer networks. We test over 30 real-life networks in 6 different disciplines (social, genetic, transport, co-authorship, trade, and neuronal networks). We further propose a random generator, displaying comparable patterns of elementary layer entanglement and transition coupling entanglement across 1,329,696 synthetic coupled multilayer networks. Our experiments demonstrate difference of layer entanglement across disciplines, and even suggest a link between entanglement intensity and homophily. We additionally study entanglement in 3 real world temporal datasets displaying a potential rise in entanglement activity prior to other network activity.
翻译:复杂的网络,如运输网络、社交网络或生物网络,通过只代表一种类型的相互作用来捕捉它们所建的复杂系统。在现实世界系统中,可能有许多不同的方面将各实体联系在一起。这些方面可以使用多层网络来捕捉,这些网络将不同的互动模式结合在一起。多层网络的结合可能具有不同的特性,这些特性可能与其模型数据的性质(或与时间依赖数据中的事件)相关联。我们假设这些特性可能反映在分层交织的方式中。在本文中,我们通过交织多层网络中层缠绕的棱镜调查了这些特性。我们在6个不同的学科(社会、遗传、运输、共同作者、贸易和神经网络)中测试了30多个实际生活网络。我们进一步提出随机生成器,显示基本层缠绕和交织的类似模式,分布在1,329,696个合成和多层网络中。我们的实验表明不同层缠绕,甚至暗示了相缠绕的层强度和同层网络之间的联系。我们在真实的网络中增加了一个时间网络活动。