A strongly NP-hard scheduling problem in which non-simultaneously released jobs with delivery times are to be scheduled on a single machine with the objective to minimize the maximum job full completion time is considered. We describe an exact implicit enumeration algorithm (IEA) and a polynomial-time approximation scheme (PTAS) for the single-machine environment. Although the worst-case complexity analysis of IEA yields a factor of $\nu!$, $\nu>n$, large sets of the permutations of the critical jobs can be discarded by incorporating a heuristic search strategy, in which the permutations of the so-called critical jobs are considered in a special priority order. Not less importantly, in practice, the number $\nu$ turns out to be several times smaller than the total number of jobs $n$, and it becomes smaller when $n$ increases. The above characteristics also apply to the proposed PTAS, which worst-case time complexity can be expressed as $O(\kappa!\kappa k n \log n)$, where $\kappa$ is the number of the long critical jobs ($\kappa<<\nu$) and the corresponding approximation factor is $1+1/k$, where $\kappa<k$. We show that the probability that a considerable number of permutations (far less than $\kappa!$) are enumerated is close to 0. Hence, with a high probability, the running time of PTAS is fully polynomial.
翻译:NP-非常严格的日程安排问题,在其中,非同时释放的工作与交货时间一起被安排在一台机器上,目的是最大限度地减少完成工作的最大时间。我们描述的是一台机器环境中的精确隐含计算算算法(IEA)和多元时间近似计划(PTAS),虽然对IEA最差的复杂分析得出了一个$nu.$,$\nu>n美元系数,但通过采用一种超常搜索战略,可以丢弃大量的关键工作的变换,以尽量减少完成工作的最大时间。在这种战略中,所谓的关键工作的变换在特殊的优先顺序中加以考虑。同样重要的是,在实践中,美元的数量比工作总数美元少几倍,而当美元增加时则会更小。以上特点也适用于拟议的PTAS,最差的时间复杂性可以表现为$(kppa!\kappapaa k klog nlog n$),其中, $qourkapappa 运行的概率是1美元, 美元是相当高的美元。