The emergence of large-scale foundation models (FoMo's) that can perform human-like intelligence motivates their deployment at the network edge for devices to access state-of-the-art artificial intelligence. For better user experiences, the pre-trained FoMo's need to be adapted to specialized downstream tasks through fine-tuning techniques. To transcend a single device's memory and computation limitations, we advocate multi-device cooperation within the device-edge cooperative fine-tuning (DEFT) paradigm, where edge devices cooperate to simultaneously optimize different parts of fine-tuning parameters within a FoMo. However, the parameter blocks reside at different depths within a FoMo architecture, leading to varied computation latency-and-memory cost due to gradient backpropagation-based calculations. The heterogeneous on-device computation and memory capacities and channel conditions necessitate an integrated communication-and-computation allocation of local computation loads and communication resources to achieve low-latency (LoLa) DEFT. To this end, we consider the depth-ware DEFT block allocation problem. The involved optimal block-device matching is tackled by the proposed low-complexity Cutting-RecoUNting-CHecking (CRUNCH) algorithm, which is designed by exploiting the monotone-increasing property between block depth and computation latency-and-memory cost. Next, the joint bandwidth-and-block allocation makes the problem more sophisticated. We observe a splittable Lagrangian expression through the transformation and analysis of the original problem, where the variables indicating device involvement are introduced. Then, the dual ascent method is employed to tackle this problem iteratively. Through extensive experiments conducted on the GLUE benchmark, our results demonstrate significant latency reduction achievable by LoLa DEFT for fine-tuning a RoBERTa model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员