Given independent standard Gaussian points $v_1, \ldots, v_n$ in dimension $d$, for what values of $(n, d)$ does there exist with high probability an origin-symmetric ellipsoid that simultaneously passes through all of the points? This basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis. Based on strong numerical evidence, Saunderson, Parrilo, and Willsky [Proc. of Conference on Decision and Control, pp. 6031-6036, 2013] conjecture that the ellipsoid fitting problem transitions from feasible to infeasible as the number of points $n$ increases, with a sharp threshold at $n \sim d^2/4$. We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = \Omega( \, d^2/\mathrm{polylog}(d) \,)$, improving prior work of Ghosh et al. [Proc. of Symposium on Foundations of Computer Science, pp. 954-965, 2020] that requires $n = o(d^{3/2})$. Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix and a careful analysis of its Neumann expansion via the theory of graph matrices.
翻译:根据独立的标准高斯点 $_1,\ldots, v_n美元(维度美元),对于美元(n, d)值的数值,是否存在极有可能同时通过所有点的源对数闪光度?将蛋游线值安装到随机点这一基本问题与低端矩阵分解、独立部件分析和主要组成部分分析有关。根据强有力的数字证据,Saundson, Parrilo, 和Willsky [决定和控制问题会议记录, pp. 6031-606, 2013] 预测,由于点数的增加,蛋白调整问题从可行过渡到不可行? 将螺旋线值调整到随机点的基本问题与低端矩阵分解、独立部件分析以及主要组成部分分析有关。我们通过为某些美元=Omega (\, d2\ matriloilo) 和 Willsky[决定和控制问题会议记录,pp. 603-606, 2013] 预测, 蛋白调调调调问题从可行的向不可行地转换成不可行,因为点数增加。 $=sim d=alcomma decommabilalstals) oralstalstalstalstalislislisalisalislex ex ex ex exxxx 需要 a.