We implement Genetic Algorithms for triangulations of four-dimensional reflexive polytopes which induce Calabi-Yau threefold hypersurfaces via Batyrev's construction. We demonstrate that such algorithms efficiently optimize physical observables such as axion decay constants or axion-photon couplings in string theory compactifications. For our implementation, we choose a parameterization of triangulations that yields homotopy inequivalent Calabi-Yau threefolds by extending fine, regular triangulations of two-faces, thereby eliminating exponentially large redundancy factors in the map from polytope triangulations to Calabi-Yau hypersurfaces. In particular, we discuss how this encoding renders the entire Kreuzer-Skarke list amenable to a variety of optimization strategies, including but not limited to Genetic Algorithms. To achieve optimal performance, we tune the hyperparameters of our Genetic Algorithm using Bayesian optimization. We find that our implementation vastly outperforms other sampling and optimization strategies like Markov Chain Monte Carlo or Simulated Annealing. Finally, we showcase that our Genetic Algorithm efficiently performs optimization even for the maximal polytope with Hodge numbers $h^{1,1} = 491$, where we use it to maximize axion-photon couplings.


翻译:我们针对四维自反多面体的三角剖分实现了遗传算法,这些剖分通过巴蒂列夫构造诱导出卡拉比-丘三维超曲面。我们证明此类算法能高效优化弦论紧化中的物理可观测量,如轴子衰变常数或轴子-光子耦合强度。在实现中,我们选择了一种三角剖分的参数化方法,通过扩展二维面的精细正则三角剖分,得到同伦不等价的卡拉比-丘三维流形,从而消除了从多面体三角剖分到卡拉比-丘超曲面映射中指数级冗余因子。特别地,我们讨论了该编码方式如何使整个克洛伊泽-斯卡克列表适用于多种优化策略(包括但不限于遗传算法)。为达到最优性能,我们采用贝叶斯优化调整遗传算法的超参数。实验表明,我们的实现显著优于马尔可夫链蒙特卡洛或模拟退火等其他采样与优化策略。最后,我们展示了遗传算法即使在霍奇数 $h^{1,1} = 491$ 的最大多面体案例中仍能高效执行优化,并以此最大化轴子-光子耦合强度。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
49+阅读 · 2021年5月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
14+阅读 · 2024年5月28日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
49+阅读 · 2021年5月9日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员