Topology optimisation of trusses can be formulated as a combinatorial and multi-modal problem in which locating distinct optimal designs allows practitioners to choose the best design based on their preferences. Bilevel optimisation has been successfully applied to truss optimisation to consider topology and sizing in upper and lower levels, respectively. We introduce exact enumeration to rigorously analyse the topology search space and remove randomness for small problems. We also propose novelty-driven binary particle swarm optimisation for bigger problems to discover new designs at the upper level by maximising novelty. For the lower level, we employ a reliable evolutionary optimiser to tackle the layout configuration aspect of the problem. We consider truss optimisation problem instances where designers need to select the size of bars from a discrete set with respect to practice code constraints. Our experimental investigations show that our approach outperforms the current state-of-the-art methods and it obtains multiple high-quality solutions.
翻译:托盘的地形优化可以作为一种组合式和多模式问题来设计,在其中定位独特的最佳设计使从业人员能够根据自己的偏好选择最佳设计。 双层优化已经成功地应用于 trus 优化, 以分别考虑上层和下层的地形学和缩放。 我们引入精确的查点, 以严格分析地形搜索空间, 并排除小问题的随机性。 我们还提议以新颖驱动的二进制粒子集合优化为更大的问题, 以便通过最大化新颖来发现上层的新设计。 对于下层, 我们使用可靠的进化选美化器来解决问题的布局配置方面。 我们考虑了 trus 优化问题实例, 设计者需要从一个与操作代码限制有关的独立设置的条码中选择大小。 我们的实验性调查显示, 我们的方法超过了当前最先进的方法, 并获得了多重高质量的解决方案 。