Focus on Deep Neural Network based malicious and normal computer Network Traffic classification. (such as attacks, phishing, any other illegal activity and normal traffic identification). In this paper, the main idea is to review, existed Neural Network based network traffic classification. Which indicates intrusion activity classification and detection. It is very important to classify network traffic to safeguard any system, connected to computer network. There are a variety of NN architecture for it, with different rate of accuracy. On this paper we will do relative compression among them. Index Terms-Computer Network, Network traffic, Packet, Intrusion, DOS (Denial-of-service), unauthorized access, IDS (Intrusion Detection System), IPS (Intrusion Prevention Systems), R2L (Remote to Local Attack), Probing, U2R (User to Root Attack), DNN (Deep Neural Network), CRNN (Convolutional Recurrent Neural Network), RPROP (Resilient propagation).
翻译:关注基于深神经网络的恶意和正常计算机网络交通分类。 (例如攻击、钓鱼、任何其他非法活动和正常交通识别) 在本文中,主要的想法是审查,存在基于神经网络的网络交通分类。 这表明入侵活动分类和探测。 非常重要的是,要对网络交通进行分类以保障任何系统, 与计算机网络连接。 网络有各种NN的架构, 准确率不同。 在本文中, 我们将对其中进行相对压缩。 索引术语- 计算机网络、 网络交通、 Packet、 Intrusion、 DOS( 高级服务)、 擅自访问、 IDS( 入侵探测系统)、 IPS( 入侵预防系统)、 R2L( 远离本地攻击)、 Probing、 U2R( 使用原始攻击)、 DNN( 深神经网络)、 CRNNN( 革命经常性神经网络)、 RPROP(恢复传播)。