Agent-based models are widely used to predict infectious disease spread. For these predictions, one needs to understand how each input parameter affects the result. Here, some parameters may affect the sensitivities of others, requiring the analysis of higher order coefficients through e.g. Sobol sensitivity analysis. The geographical structures of real-world regions are distinct in that they are difficult to reduce to single parameter values, making a unified sensitivity analysis intractable. Yet analyzing the importance of geographical structure on the sensitivity of other input parameters is important because a strong effect would justify the use of models with real-world geographical representations, as opposed to stylized ones. Here we perform a grouped Sobol's sensitivity analysis on COVID-19 spread simulations across a set of three diverse real-world geographical representations. We study the differences in both results and the sensitivity of non-geographical parameters across these geographies. By comparing Sobol indices of parameters across geographies, we find evidence that infection rate could have more sensitivity in regions where the population is segregated, while parameters like recovery period of mild cases are more sensitive in regions with mixed populations. We also show how geographical structure affects parameter sensitivity changes over time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员