We consider the problem of constructing confidence intervals for the median of a response $Y \in \mathbb{R}$ conditional on features $X = x \in \mathbb{R}^d$ in a situation where we are not willing to make any assumption whatsoever on the underlying distribution of the data $(X,Y)$. We propose a method based upon ideas from conformal prediction and establish a theoretical guarantee of coverage while also going over particular distributions where its performance is sharp. Further, we provide a lower bound on the length of any possible conditional median confidence interval. This lower bound is independent of sample size and holds for all distributions with no point masses.
翻译:我们考虑的问题是,如果我们不愿对数据的基本分配(X,Y)美元做出任何假设,那么,以X=xxxxxxxx\in\mathbb{R ⁇ d$为条件,为答复中位元构建信任间隔的问题。我们建议一种基于一致预测设想的方法,建立覆盖面的理论保障,同时在性能显著的特定分布中位值上进行理论保障。此外,我们对任何可能的有条件的中位值信任间隔的长度规定了较低的限制。这一较低约束独立于样本大小,并对所有无点质量的分布进行搁置。