Deraining is a significant and fundamental computer vision task, aiming to remove the rain streaks and accumulations in an image or video captured under a rainy day. Existing deraining methods usually make heuristic assumptions of the rain model, which compels them to employ complex optimization or iterative refinement for high recovery quality. This, however, leads to time-consuming methods and affects the effectiveness for addressing rain patterns deviated from from the assumptions. In this paper, we propose a simple yet efficient deraining method by formulating deraining as a predictive filtering problem without complex rain model assumptions. Specifically, we identify spatially-variant predictive filtering (SPFilt) that adaptively predicts proper kernels via a deep network to filter different individual pixels. Since the filtering can be implemented via well-accelerated convolution, our method can be significantly efficient. We further propose the EfDeRain+ that contains three main contributions to address residual rain traces, multi-scale, and diverse rain patterns without harming the efficiency. First, we propose the uncertainty-aware cascaded predictive filtering (UC-PFilt) that can identify the difficulties of reconstructing clean pixels via predicted kernels and remove the residual rain traces effectively. Second, we design the weight-sharing multi-scale dilated filtering (WS-MS-DFilt) to handle multi-scale rain streaks without harming the efficiency. Third, to eliminate the gap across diverse rain patterns, we propose a novel data augmentation method (i.e., RainMix) to train our deep models. By combining all contributions with sophisticated analysis on different variants, our final method outperforms baseline methods on four single-image deraining datasets and one video deraining dataset in terms of both recovery quality and speed.
翻译:脱水是一项重要而基本的计算机愿景任务,目的是清除雨量和在雨天下采集的图像或视频中的积蓄。 现有的脱水方法通常会做出雨模型的超常假设, 迫使它们采用复杂的优化或迭代改进, 以达到高恢复质量。 然而, 这会带来耗时的方法, 并影响处理与假设不同的降雨模式的有效性。 在本文中, 我们提出一种简单而有效的脱水方法, 将降水设计成一个预测性的过滤器, 没有复杂的降雨模型假设。 具体地说, 我们确定空间变异的预测过滤器( SP- SPFilt), 以适应的方式预测适当的雨型模型的内核, 通过深网络过滤不同的个体像素。 由于过滤器可以通过高超速的同化变速进行实施, 我们的方法可以非常高效。 我们进一步建议 EfDeRain+ 包含三项主要的贡献, 解决雨水残余的降雨量、 多种规模和多样的降水量模式, 而不会损害效率。 首先, 我们提议在一次降水流中预测的过滤器中, 透析中, 透透透透析了我们的数据, 将所有的降水层变压数据, 将整个变变换成, 我们的变变变换到二层数据法, 能够找出的变换的变换到 将所有的变换到变换到变。