We present a general framework for derandomizing random linear codes with respect to a broad class of permutation-invariant properties, known as local properties, which encompass several standard notions such as distance, list-decoding, list-recovery, and perfect hashing. Our approach extends the classical Alon-Edmonds-Luby (AEL) construction through a modified formalism of local coordinate-wise linear (LCL) properties, introduced by Levi, Mosheiff, and Shagrithaya (2025). The main theorem demonstrates that if random linear codes satisfy the complement of an LCL property $\mathcal{P}$ with high probability, then one can construct explicit codes satisfying the complement of $\mathcal{P}$ as well, with an enlarged yet constant alphabet size. This gives the first explicit constructions for list recovery, as well as special cases (e.g., list recovery with erasures, zero-error list recovery, perfect hash matrices), with parameters matching those of random linear codes. More broadly, our constructions realize the full range of parameters associated with these properties at the same level of optimality as in the random setting, thereby offering a systematic pathway from probabilistic guarantees to explicit codes that attain them. Furthermore, our derandomization of random linear codes also admits efficient (list) decoding via recently developed expander-based decoders.


翻译:我们提出了一个通用框架,用于对随机线性码进行去随机化处理,该框架适用于一类广泛的置换不变性质,即局部性质。这些性质涵盖了多个标准概念,如距离、列表解码、列表恢复和完美哈希。我们的方法通过Levi、Mosheiff和Shagrithaya(2025)引入的局部坐标线性(LCL)性质的修正形式,扩展了经典的Alon-Edmonds-Luby(AEL)构造。主要定理表明,如果随机线性码以高概率满足某个LCL性质$\mathcal{P}$的补集,那么也可以构造出显式码来满足$\mathcal{P}$的补集,同时字母表大小会扩大但仍保持常数。这为列表恢复及其特殊情况(例如,带擦除的列表恢复、零误差列表恢复、完美哈希矩阵)提供了首个参数与随机线性码相匹配的显式构造。更广泛地说,我们的构造实现了与这些性质相关的全部参数范围,其最优性水平与随机设置相同,从而提供了一条从概率保证到实现这些保证的显式码的系统化路径。此外,我们对随机线性码的去随机化也允许通过最近开发的基于扩展图的解码器进行高效(列表)解码。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员