In much of the literature on function approximation by deep networks, the function is assumed to be defined on some known domain, such as a cube or a sphere. In practice, the data might not be dense on these domains, and therefore, the approximation theory results are observed to be too conservative. In manifold learning, one assumes instead that the data is sampled from an unknown manifold; i.e., the manifold is defined by the data itself. Function approximation on this unknown manifold is then a two stage procedure: first, one approximates the Laplace-Beltrami operator (and its eigen-decomposition) on this manifold using a graph Laplacian, and next, approximates the target function using the eigen-functions. Alternatively, one estimates first some atlas on the manifold and then uses local approximation techniques based on the local coordinate charts. In this paper, we propose a more direct approach to function approximation on \emph{unknown}, data defined manifolds without computing the eigen-decomposition of some operator or an atlas for the manifold, and without any kind of training in the classical sense. Our constructions are universal; i.e., do not require the knowledge of any prior on the target function other than continuity on the manifold. We estimate the degree of approximation. For smooth functions, the estimates do not suffer from the so-called saturation phenomenon. We demonstrate via a property called good propagation of errors how the results can be lifted for function approximation using deep networks where each channel evaluates a Gaussian network on a possibly unknown manifold.


翻译:在很多关于深网络函数近似的文献中, 函数被假定在某些已知的领域( 如立方体或球体) 上定义。 在实践中, 数据可能并不密集于这些域, 因此, 近似理论结果被观察为太保守。 在多重学习中, 假设数据样本来自未知的多个元体; 即, 元体是由数据本身定义的。 这个未知的元体的函数近似是一个两个阶段程序 : 首先, 一种是接近 Laplace- Beltrami 操作员( 及其深原分解 ), 在一个已知的域( 如立方形图 ) 上 。 在实践中, 数据可能不密集于 Laplacian 数据, 从而使用 eigen- 功能, 从而接近目标函数 。 或者, 或者, 在多个元值上, 我们的构建过程需要更直接的方法, 而不是通过其它的精确度 。 我们的精确度函数需要一种不透明性 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
3+阅读 · 2018年11月20日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
14+阅读 · 2019年9月11日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
3+阅读 · 2018年11月20日
Top
微信扫码咨询专知VIP会员