Analysis of heterogeneous patterns in complex spatio-temporal data finds usage across various domains in applied science and engineering, including training autonomous vehicles to navigate in complex traffic scenarios. Motivated by applications arising in the transportation domain, in this paper we develop a model for learning heterogeneous and dynamic patterns of velocity field data. We draw from basic nonparameric Bayesian modeling elements such as hierarchical Dirichlet process and infinite hidden Markov model, while the smoothness of each homogeneous velocity field element is captured with a Gaussian process prior. Of particular focus is a scalable approximate inference method for the proposed model; this is achieved by employing sequential MAP estimates from the infinite HMM model and an efficient sequential GP posterior computation technique, which is shown to work effectively on simulated data sets. Finally, we demonstrate the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
翻译:对复杂时空数据中各种不同模式的分析发现,应用科学和工程的不同领域都使用这种分析,包括培训自主车辆在复杂的交通情况中航行。在运输领域产生的各种应用的推动下,我们在本文件中开发了学习不同和动态速度实地数据模式的模式。我们从基本的非平行贝叶斯模型元素,如等级的Drichlet进程和无限隐藏的Markov模型中提取,同时在之前用一个高斯进程来捕捉每个同质速度场元素的平滑性。特别重点是拟议模型的可扩缩近近似推理法;这是通过使用无限HMM模型的连续MA估计和高效的连续GPpostior计算技术实现的,这些技术显示在模拟数据集上有效工作。最后,我们向复杂的多车辆互动的NGSIM数据集展示了我们技术的有效性。