Is it possible to use convolutional neural networks pre-trained without any natural images to assist natural image understanding? The paper proposes a novel concept, Formula-driven Supervised Learning. We automatically generate image patterns and their category labels by assigning fractals, which are based on a natural law existing in the background knowledge of the real world. Theoretically, the use of automatically generated images instead of natural images in the pre-training phase allows us to generate an infinite scale dataset of labeled images. Although the models pre-trained with the proposed Fractal DataBase (FractalDB), a database without natural images, does not necessarily outperform models pre-trained with human annotated datasets at all settings, we are able to partially surpass the accuracy of ImageNet/Places pre-trained models. The image representation with the proposed FractalDB captures a unique feature in the visualization of convolutional layers and attentions.
翻译:是否可以使用未经自然图像事先训练的进化神经网络来帮助自然图像理解? 该文件提出了一个新概念, 即“ 公式驱动的受监督学习 ” 。 我们通过分配分形自动生成图像模式及其分类标签, 分形以真实世界背景知识中存在的自然法则为基础。 从理论上讲, 在培训前阶段使用自动生成的图像而不是自然图像, 使我们能够生成一个无穷无尽的标签图像数据集。 虽然模型先于拟议中的分形数据数据库( Fractal DB) (Fractal DB) 培训, 这个数据库没有自然图像, 并不一定超越模型, 在所有环境中先经人类附加说明数据集培训后, 我们能部分地超过图像网络/ 路径预训练模型的精度。 与拟议中的FractalDB 相比, 图像的呈现在变形层和注意力的视觉化中具有独特的特征 。