The goal of this paper is to provide a survey and application-focused atlas of collective behavior coordination algorithms for multi-agent systems. We survey the general family of collective behavior algorithms for multi-agent systems and classify them according to their underlying mathematical structure. In doing so, we aim to capture fundamental mathematical properties of algorithms (e.g., scalability with respect to the number of agents and bandwidth use) and to show how the same algorithm or family of algorithms can be used for multiple tasks and applications. Collectively, this paper provides an application-focused atlas of algorithms for collective behavior of multi-agent systems, with three objectives: 1. to act as a tutorial guide to practitioners in the selection of coordination algorithms for a given application; 2. to highlight how mathematically similar algorithms can be used for a variety of tasks, ranging from low-level control to high-level coordination; 3. to explore the state-of-the-art in the field of control of multi-agent systems and identify areas for future research.
翻译:本文的目的是为多试剂系统提供一个以应用为重点的集体行为协调算法调查图集。我们调查了多试剂系统集体行为算法的一般类别,并根据这些系统的基本数学结构对其进行分类。我们这样做的目的是捕捉算法的基本数学特性(例如代理人数目和带宽使用方面的可调整性),并表明如何在多重任务和应用中使用同样的算法或算法的类别。本文共同为多试剂系统的集体行为提供一个以应用为重点的算法图集,有三个目标:1. 在选择特定应用的协调算法时,作为从业人员的辅导指南;2. 突出如何在从低层次控制到高层协调等各种任务中使用数学上相似的算法;3. 探索多试剂系统控制领域的最新技术,并确定今后研究的领域。