A string $w$ is called a minimal absent word (MAW) for another string $T$ if $w$ does not occur in $T$ but the proper substrings of $w$ occur in $T$. For example, let $\Sigma = \{\mathtt{a, b, c}\}$ be the alphabet. Then, the set of MAWs for string $w = \mathtt{abaab}$ is $\{\mathtt{aaa, aaba, bab, bb, c}\}$. In this paper, we study combinatorial properties of MAWs in the sliding window model, namely, how the set of MAWs changes when a sliding window of fixed length $d$ is shifted over the input string $T$ of length $n$, where $1 \leq d < n$. We present \emph{tight} upper and lower bounds on the maximum number of changes in the set of MAWs for a sliding window over $T$, both in the cases of general alphabets and binary alphabets. Our bounds improve on the previously known best bounds [Crochemore et al., 2020].
翻译:在本文中,我们研究了滑动窗口模型中MAW的组合属性,即当固定长度$的滑动窗口被移到长度$$$的输入字符串上时,MAW的组合变化方式,美元== mathttt{a,b,c ⁇ $;然后,字符串的MAWs系列为$w = mathtt{aaaaaa, aaba, bab, bb, c ⁇ $。我们研究了滑动窗口模型中MAW的组合属性,即当固定长度$d$的滑动窗口被移到长度$T$美元以上时,MAWs集的组合变化方式是如何变化的。在普通字母表和bingariele字母中,我们在2020年最高级字母表中的移动窗口的最大变化次数上下下下限为$@emph{tff}。